Redshifts fotométricos para o S-PLUS utilizando técnicas de aprendizado de máquina.

Autor Erik Vinicius Rodrigues de Lima
Orientador Laerte Sodre Junior
Tipo de programa Mestrado
Ano da defesa 2019
Palavras chave Aprendizado de máquina
Galáxias
Levantamentos de galáxias.
Redshift fotométrico
Departamento Astronomia
Resumo

O foco deste trabalho é a obtenção de redshifts fotométricos de galáxias utilizando os códigos de aprendizado de máquina ANNz2, GPz e modelos de aprendizado profundo feitos com o Keras. Nós aproveitamos a excelente oportunidade que o novo mapeamento multicor do céu austral, chamado Southern Photometric Local Universe Survey (S-PLUS), oferece ao utilizar um sistema único de filtros, composto por cinco filtros largos e sete filtros estreitos. Além do uso das magnitudes, também é possível utilizar características não fotométricas em métodos de aprendizado de máquina, como o tamanho dos objetos, sua largura à meia altura e seu brilho superficial, de forma a melhorar os resultados. Para este trabalho, foram usados dados provenientes do Data Release 1 do S-PLUS, unido à outros dois grandes projetos, o Data Release 15 do Sloan Digital Sky Survey (SDSS) e o catálogo unWISE do Wide-field Infrared Survey Explorer (WISE), na região da Stripe-82. Dentre os três algoritmos comparados neste trabalho, o que apresentou a melhor performance geral foi o baseado em aprendizado profundo. Os redshifts fotométricos obtidos com este método têm precisão de 2.49% para galáxias com magnitude r entre 16 e 21, com viés igual a 0.4% e fração de outliers de 0.64%. Em comparação com o método utilizado atualmente para a estimativa de redshifts fotométricos no S-PLUS, o código de ajuste de templates BPZ, foi constatado que os métodos de aprendizado de máquina têm precisão superior, viés inferior e menor fração de outliers. Uma análise das funções de distribuição de probabilidades é feita, concluindo-se que os algoritmos de aprendizado de máquina apresentam distribuições mais largas quando comparadas às do código BPZ.