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Abstract
Ray theory, a high-frequency approximation to describe wave propagation, has
been a cornerstone in seismology for over a hundred years. Despite its simplic-
ity and wide range of applications, some limitations combined with the ever-
increasing computational power motivated the development of finite-frequency
theory, a better model to describe how the Earth’s inner structure affects seis-
mic waves. Finite-frequency theory has matured a lot in the last decades, and
it is now widely applied in many geophysical problems. However, most stu-
dents and even some experienced researchers face difficulties understanding it.
An appropriate theoretical comprehension is paramount to making the most out
of the methods a theory underpins, avoiding pushing it beyond its limits, and
further developing it. With that problem in mind, this paper shows a simplified
formulation of the sensitivity kernels, which are the generalization of rays in the
finite-frequency regime. The resultant model, despite its limitations, correctly
predicts the main features of finite-frequency theory, including the zero sensi-
tivity in the middle of the travel-time kernels, known as the banana-doughnut
paradox, shedding new light on that intriguing phenomenon. The step-by-step
derivation and relatively easy equations should be understandable by an under-
graduate student with a reasonable knowledge of classical physics and calculus.
A Colab Notebook implementing the main formulas accompanies the paper,
allowing readers to interact and play with the results.
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1. Introduction

The increasing levels of specialization and automation are two crucial factors that have allowed
both the ever-growing accumulation of knowledge and the technological progress that have
brought countless benefits to humankind. In the last decades, science has experienced remark-
able theoretical, experimental, and computational advances, and seismology is no exception.
That enormous progress brought about the development of a wide range of methods, computa-
tional codes, and instruments that are now available to scientists. The development of high-level
computational languages and the availability of many sophisticated computational packages
made many activities very easy and productive. Despite all the advances and undeniable bene-
fits of computational developments and automation, many scientists fail to make the most out
of them because they do not have a deep understanding of the methodologies, techniques, and
codes they are using. In geosciences, for example, one could mention the example of seismic
tomography, a technique that uses seismic waves to image the Earth’s interior. A variety of
phenomena can create seismic waves, including earthquakes, asteroid impacts, and artificial
explosions. Large earthquakes are the main source of seismic data for carrying out seismic
tomography on a global scale. Provided that one knows the location and origin time of the
earthquakes and that a network of seismographic stations is available, it is possible to use the
record of the seismic waves at the receivers to infer the composition of the Earth’s interior. The
more earthquakes and stations spread over the surface of the planet, the better the result.

Historically, seismologists have been carrying out that process by using a velocity model,
which is a simplified mathematical representation of the Earth. Using the velocity model, one
computes the theoretical travel times, amplitudes, or even waveforms of the seismic waves and
compares them with the observed values recorded at the stations. If the predicted values match
the observed ones, we know our model is a reasonable representation of the planet’s interior.
Otherwise, we iteratively update the model until the difference between them is minimized
subject to some physical, geological, and mineralogical constraints (e.g. the seismic velocities
should lie in the range of known values for the Earth’s rocks, derived from lab experiments
with samples, and the model should not have excessive roughness).

Aki and Lee (1976) and Aki et al (1977) used teleseismic P-wave travel-time residuals (dif-
ferences between observed and theoretical travel times) to determine the three-dimensional
seismic structure of the lithosphere. Sengupta and Toksöz (1977) computed a 3D velocity
model for the whole mantle combining P, S, and some PcP (P wave reflected on the outer
core) and ScS (S wave reflected on the outer core) travel-time measurements. Dziewonski et al
(1977) imaged the top 1,100 km of the mantle using P-wave residuals. Since then, many 1D
reference Earth models (e.g. Dziewonski and Anderson 1981, Kennet 1991, Kennett et al 1995)
and 3D Earth models (e.g. Ritsema et al 1999, Grand 2002, Montelli et al 2006, Houser et al
2008, Ritsema et al 2011, Schaeffer and Lebedev 2013, French and Romanowicz 2014, Koele-
meijer et al 2016, Durand et al 2017, Lu et al 2019, Lei et al 2020) using multiple techniques
and various types of data have been developed, such as body-wave travel times, surface-wave
dispersion, Earth’s normal modes, mass and moment of inertia, and waveform inversion.

In the early years of seismic tomography, the limited computational power required low-
cost computational methods that used seismic ray theory. The seismic ray theory (or simply
‘ray theory’) is an extremely important method in seismology, consisting of a high-frequency
approximation for the wave field, borrowed from optics, in which elementary waves, such as
P, S, reflected, refracted, and transmitted waves, propagate along rays that can be handled
independently (Cerveny 2005). Ray theory allows for easy and efficient computation of travel
times and amplitudes of seismic waves. However, it only works properly in piecewise smooth

2



Eur. J. Phys. 43 (2022) 045802 C Ciardelli

media, in which the dominant wavelength is considerably smaller than the dimensions of the
inhomogeneities (Arora et al 2011). It also fails to take scattering effects into account. The
limitations of the ray theory led to the development of the so-called finite-frequency theory in
seismology. In that new theory, the high-frequency approximation is relaxed, and volumetric
structures named Fresnel volumes (Brokesc̆ová 2006), Fréchet kernels (Tarantola 1987), or
sensitivity kernels (Marquering et al 1998) replace the infinitesimal seismic rays. The term
‘sensitivity’, in this case, refers to the fact that these structures describe what waves ‘sense’ in
the Earth’s interior as they travel through it.

This paper presents a simplified derivation of these sensitivity kernels, which helps students
of seismology come to terms with some difficult concepts of the finite-frequency theory, such
as the so-called banana-doughnut paradox. Section 2 introduces the sensitivity kernels and
the main questions regarding the finite-frequency theory. Section 3 briefly reviews Huygens’
principle and Fermat’s principle of wave propagation. Section 4 contains the derivation of the
simplified model and its interpretation, explaining the absence of sensitivity in the middle of the
travel-time kernels. Section 5 presents a Colab notebook that implements the main formulas,
allowing the readers to interact with the model. Section 6 furthers discusses the results, and
section 7 concludes the paper by summarizing the main takeaways.

2. Sensitivity kernels

Whenever one uses ray theory in seismic tomography, the implicit assumption is that any
velocity anomaly not crossed by the ray does not affect the amplitude or the travel time of
the recorded signal, since all the energy is assumed to travel along the ray. Another way of
saying this is that all the amplitude and the travel-time sensitivities lie along the ray path. The
fact that the sensitivity kernels have a non-zero volume in the finite-frequency regime shows
that structures outside the ray path can affect the seismograms. The sensitivity kernels have a
volume proportional to the prevailing wavelength of the seismic waves. As one would expect,
the shorter the wavelength, the thinner the kernels. As the wavelength approaches zero, they
collapse into geometrical rays with infinitesimal width, recovering ray theory. According to
Snieder (1999) and Hung et al (2001), the kernels’ width scale with

√
λL, where λ is the

wavelength and L is the distance between source and receiver.
Besides the wavelength, the kernels also depend on the kind of wave (P, S, Pp, ScS,

Rayleigh, Love, etc) and the measurement. Amplitude measurements generate volumetric ker-
nels whose shape resembles a banana. The maximum sensitivity occurs in the middle of the
volume, where ray theory predicts the ray path. However, as first realized by Woodward (1992)
and later by Marquering et al (1999), travel-time measurements give origin to what seems to
be a paradoxical structure: a hollow banana. That result, at first sight, seems strange because it
implies that right at the ray path, where one would expect the sensitivity to be maximum, the
influence on the travel time of the waves is zero. Following Marquering et al (1999), Bozdağ
et al (2011), and using SPECFEM3D_GLOBE (Komatitsch and Tromp 2002a, 2002b), we can
compute very accurate amplitude and travel-time kernels (figure 1).

The sensitivity kernels are also known as Fréchet kernels because they are a kind of Fréchet
derivative. They show how the amplitude or the travel time varies with respect to an infinitesi-
mal perturbation in a model parameter. We see in figure 1 that all the kernels are predominantly
negative. This is because increasing the propagation velocity of the seismic waves has the
double effect of reducing both the amplitudes and the travel times (figures 1(e) and (f)). The
reduction in the travel time is easy to understand, but the effect on the amplitude is less obvious.
To understand this, let us imagine a wave on a violin string, in which the propagation velocity
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Figure 1. (a)–(d) Amplitude and travel-time sensitivity kernels for P and S waves. The
amplitude kernels connecting the source (magenta star) and the receiver (yellow triangle)
are solid, while the travel-time kernels are hollow, with zero sensitivity at the ray path
(green line). In both cases, the dominant period is ∼37 s. The first and the second Fresnel
zones are clear in all figures. The S-wave kernels (β) are narrower than the P-wave ker-
nels (α) because the P-wave velocity is approximately

√
3 times larger than the S-wave

velocity, resulting in a shorter wavelength. The velocity model is the isotropic version
of the preliminary reference Earth model PREM (Dziewonski and Anderson 1981) and
the black dashed lines denote the 410 and 660 km seismic velocity discontinuities. (e) P
wave for unperturbed PREM (black) and perturbed with a 3% increase in the VP (red).
This velocity increase perturbs both the amplitude (δA) and the travel time (δT); (f) same
as (e) but for an S wave before and after a 3% increase in the VS.

increases with the string tension. The amount of work the violinist does on the string is pro-
portional to both the amplitude of the deformation and the string tension. Assuming that the
violinist always pulls the string with the same force, the amount of deformation is inversely
proportional to its tension. Nevertheless, the energy of the resultant wave remains constant
(a larger displacement is compensated by a weaker force). Therefore, for waves with the same
energy content, a higher-tension string means higher velocity and smaller amplitude at the
same time. For seismic waves, increasing the bulk modulus (resistance to volume changes) or
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the shear modulus (rigidity) of the medium increases the velocity and decreases the amplitude
for the same reason.

Ishimaru (1978) and Aki and Richards (1980) discuss the effects of scattering in wave prop-
agation and show cross-sections of the sensitivity kernels, derived from Fresnel’s wave theory.
Groenenboom and Snieder (1995) show that the properties of the direct wave are determined
by a weighted average over the first Fresnel zone for strongly scattering media. That result,
in combination with the fact that in practical tomographic inversions, one always imposes
some level of smoothness through model regularization, explains why in some cases ray the-
ory gives correct results even for media where short-length-scale perturbations (smaller than
the prevailing wavelength) are present (Snieder and Lomax 1996). Marquering et al (1999)
and Hung et al (2001) explain why the travel-time kernels are hollow using scattering and a
finite-frequency phenomenon known as wavefront healing. Spetzler and Snieder (2004) make
an intuitive review of the finite-frequency theory, remarking on the limitations of ray theory and
showing the connection between the sensitivity kernels and the Kirchhoff integral. The authors
highlight that the advantage of the sensitivity kernels is that the integration is performed over
a volume in the medium, whereas the Kirchhoff integral is defined on a surface only. Nolet
et al (2005) present a simplified derivation of the amplitude and travel-time sensitivity of body
waves with respect to velocity perturbations in the Earth’s structure, taking into account the
effect of finite frequencies. Nolet (2008) covers the essential aspects of seismic tomography,
including the finite-frequency theory, at a level accessible to students.

Despite these excellent references, many phenomena related to finite-frequency effects
remain mysterious for many people working in the field. As it might be the case that navigat-
ing through a more accessible approach could lead to a better understanding of the described
phenomenon, the creation of a kernel model that is both simple and representative of its main
features could help shed some light on the topic. Developing and exploring such a model is the
subject of the rest of this paper.

3. Basic principles of wave propagation

To create a model, it is convenient to review two principles that apply to undulatory phenomena:
Huygens’ principle (also known as Huygens–Fresnel principle) and Fermat’s principle.

3.1. Huygens’ principle

Huygens’ principle states that every point on a wavefront is also a source of spherical wavelets
that propagate in all directions. The result of the superposition and interference of all these
wavelets is the wavefront itself. An intriguing question concerning the Huygens’ principle then
arises: if every point on the wavefront creates a new wave that propagates in all directions, then
why does each wavefront not create two new wavefronts: one moving outwards, away from the
source, and another traveling inwards, toward it? Why do we only observe the outward prop-
agating wavefront? Huygens’ principle itself does not explain this, but one can demonstrate
that only the outward propagating waves can exist by using the laws of conservation of energy
and momentum.

As mentioned by Robinson and Clark (2017), that problem was later solved by Fresnel and
Kirchhoff with a more advanced formulation of Huygens’ principle, expressed in the Fres-
nel–Kirchhoff integral theorem. Explaining that theorem is beyond the scope of this paper.
However, in short, it conveys that the amplitudes of the spherical wavelets vary with the direc-
tion so that the amplitude of the resultant inward wavefront becomes zero. An equivalent way
of stating this is that the inward propagating wavelets cancel each other out, resulting in a null
inward wavefront.
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Figure 2. Cross-section of a diffraction experiment using: (a) one slit; (b) three slits;
(c) seven slits; and (d) fifteen slits. As the number of slits tends to infinity, the interference
pattern recovers the plane wave.

3.1.1. Huygens’ principle and diffraction. An easy way to visualize Huygens’ principle is by
observing diffraction phenomena. Suppose a plane wave in a 3D space is propagating from left
to right and, eventually, the wavefront hits a wall with a single slit (figure 2). The wall blocks
the waves created on almost all points on the wavefront, except those located right at the slit
position. With a single slit, only a spherical wavefront emerges on the other side of the wall.
However, what happens when we add more slits to the experiment? With two or more slits,
an interference pattern emerges. If we add many slits, the waves interfere so that the resultant
wavefront resembles the plane wave. With infinitely many slits, which is the equivalent of
having no wall, we perfectly recover the plane wavefront.

A remark about Huygens’ principle is that it does not hold when the number of spatial
dimensions is even. In that case, the Green’s function that solves the corresponding wave
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Figure 3. Illustration of Fermat’s principle. In a homogeneous medium, the path of the
least time for a wave created at point A and detected by a receiver at point B is a straight
line (purple line). All the trajectories that are close to the least time trajectory (blue lines)
have travel times very similar to the minimum (Tmin). As the perturbation δs on the path
gets larger (red lines), the travel time increases by a progressively larger δT.

equation has a tail, which implies that the information on the wavefront is not enough to predict
its future state. Under those circumstances, one must also consider all the information in the
space between the source and the wavefront (Dai and Stojkovic 2013).

3.2. Fermat’s principle

According to Fermat’s principle, a beam of light traveling from point A to point B always takes
a path that is stationary with respect to small perturbations in the trajectory (figure 3). This prin-
ciple is also commonly referred to as the principle of least time because the path of minimum
time is the most common kind of stationary path. Nevertheless, maximum time paths or any
other kind of stationary path are also possible according to Fermat’s principle. In seismology,
one could mention the PP (P wave bouncing off the surface once), SS (S wave bouncing off the
surface once), PS (P wave bouncing off the surface once and being converted to an S wave),
and SP (S wave bouncing off the surface once and being converted to a P wave) elastic waves as
examples. These waves are called minmax phases because the partial derivatives of the travel
time with respect to changes in the position of the bouncing point on the surface along the
source-receiver direction and the orthogonal direction are both zero. However, the bouncing
point is a saddle point of the travel time function: maximum in the source-receiver direction
and minimum in the orthogonal direction.

However, how do waves ‘know’ which one is the path of the least time? Feynman (2006)
explains why a photon bouncing off a mirror reflects with identical incidence and emergence
angles (path of least time). He does so by using the quantum description of light, which allows
the photon to simultaneously take all possible paths from the source to the receiver. He also
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Figure 4. The interference can be constructive or destructive. (a) When the phase shift
(φ) between the two signals (blue line and dashed red line) is zero, there is complete
construction (green line). (b) When φ =

π

2
, partial construction occurs. (c) When φ = π,

there is complete destruction. (d) When φ =
3π
2

, partial construction occurs again.

shows that only the paths next to the one of the least time contribute to the resultant recorded
signal. The key to understanding this is to realize that the travel time of a stationary path is
invariant under small perturbations in the trajectory (figure 3). As a result, all paths close to
that of the least time arrive at the receiver in phase and constructively interfere. Because all the
remaining paths result in waves with randomly distributed phases, they cancel each other out
(figure 4). This provides some insight regarding the dependence of the kernels’ width on the
wavelength. The larger the wavelength, the more the travel time can change before the waves
get out of phase and destructively interfere. In the infinite-frequency regime, the wavelength
is zero. In this case, a tiny difference in the travel time is enough to misalign the waves so that
only the stationary path survives, recovering the ray theory.

4. Model formulation

We begin our simplified model of a sensitivity kernel by defining a convenient spherical coor-
dinates system, shown in figure 5. A surface element in this coordinate system is given by:

dS = r2 sin θ dθ dφ. (1)

We calculate the surface area of a sphere SS with radius r by integrating over the domain
S = {0 � θ � π and 0 � φ � 2π}:

SS =

∫
S
dS =

∫ 2π

0

∫ π

0
r2 sin θ dθ dφ = r2

∫ 2π

0
dφ
(
− cos θ|π0

)
= 4πr2. (2)
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Figure 5. System of spherical coordinates in which r is the radius (red arrows), θ is the
colatitude (blue curved arrow), and φ in the longitude (green curved arrow). The yellow
region represents an infinitesimal element of area dS.

4.1. Inverse-square law

As a next step, we place a light source at the origin of the coordinate system. The total energy
output per unit time is E. We define the energy density on the wavefront (εS) by the energy
output divided by the area of the wavefront, which is the surface of a sphere. From that result,
it is easy to derive the inverse-square law. The inverse-square law says that the energy density
on the wavefront in a three-dimensional space is inversely proportional to the distance from
the source squared, as shown in equation (3) and figure 6:

εS(r) =
E

4πr2
and

εS2

εS1
=

dS1

dS2
=

r1
2

r2
2
. (3)

In case we want the energy contained in the spherical wavefront (ES), we just need to inte-
grate the energy density element dE = ε dS over the surface S (equation (4)). The result, as
expected, is exactly the total energy output E of the source:
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Figure 6. We represent the energy source as a light bulb at the origin of the coordinate
system. The energy density ratio between the two wavefronts is equal to the inverse ratio
of their radii squared, as derived in equation (3).

4.2. Energy incident on a virtual plane

We proceed by setting a virtual plane at a distance r from the energy source, and defining a new
coordinate system, as depicted in figure 7. This scheme is similar to the parametrization used
by Tian et al (2007). In this case, how much energy per unity time does the plane receive? In
other words, if that plane was a 100% efficient solar panel, how much energy would it generate?

Using the parametrization described in figure 7, we calculate the total energy reaching the
virtual plane by integrating all the light rings from s = 0 to infinity. In this new coordinate
system, the surface element dS is given by:

dS = s ds dφ. (5)

The first thing we need is the energy density on each ring (εD). Unlike the previous case, the
energy density on the surface of the plane is not constant. It not only decays with the square
of the distance d but also depends on the incidence angle θ (Lambert’s cosine law). Just as
sunlight during winter spreads over a larger area due to a higher angle of incidence, the energy
density on the disc decays with the cosine of θ. Thus, combining the geometrical spreading
with the effect of the oblique incidence, we find:

εD(d) =
E

4πd2
cos θ, where d =

√
r2 + s2 and cos θ =

r√
r2 + s2

. (6)

We rewrite equation (6) in terms of r and s:

εD(r, s) =
E

4π(r2 + s2)
r√

r2 + s2
. (7)
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Figure 7. Schematic describing a plane located at a distance r from the light source.
The energy first arrives at the closest point on the plane, corresponding to s = 0. As
time progresses, more and more light reaches the plane as a series of concentric rings of
width ds.

Therefore, the total energy reaching the plane ED is:

ED =

∫
S
dE =

∫
S
εD(r, s)dS =

∫ 2π

0

∫ ∞

0
εD(r, s)s ds dφ

=

∫ 2π

0

∫ ∞

0

E
4π(r2 + s2)

rs√
r2 + s2

ds dφ

=
Er
4π

∫ 2π

0
dφ
∫ ∞

0

s(
r2 + s2

) 3
2

ds

=
Er
4π

2π

(
−1√

r2 + s2

∣∣∣∣∞
0

)

=
E
2
. (8)

The result given by equation (8) makes sense. Since it is an infinite virtual plane, one would
expect that exactly half of the energy output would eventually reach it.

4.3. Energy density at the receiver using Huygens’ principle

With the previous results at hand, we calculate the energy density at a receiver located at a dis-
tance L = 2r from the source, as depicted in figure 8. To do that, we apply Huygens’ principle
on the surface of the plane.
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Figure 8. Schematic showing a receiver (magenta triangle) located on the other side
of the virtual plane surface, diametrically opposite to the light source. The red lines
represent the wavefronts.

As shown in figure 8, each point on the wavefront reaching the plane can be considered
a new source of hemispherical waves (waves propagating back to the source do not exist, as
previously pointed out). Thus, one evaluates the ‘density of the energy density’ at the receiver
(εR) from the energy density on the plane (εD) by taking into account the geometrical spreading
and the incidence angle once again:

εR(r, s) =
εD(r, s)

2π(r2 + s2)
r√

r2 + s2
=

E
8π2(r2 + s2)2

r2

r2 + s2
. (9)

The factor in the denominator of equation (9) is 2π instead of 4π because we are assuming
hemispherical wavefronts. To compute the energy density at the receiver, we must integrate the
contributions of the entire plane:

εR(r) =
∫

S
dE =

∫
S
εR(r, s)dS =

∫ 2π

0

∫ ∞

0
εR(r, s)s ds dφ

=

∫ 2π

0

∫ ∞

0

E
8π2(r2 + s2)2

r2s
r2 + s2

ds dφ

=
Er2

8π2

∫ 2π

0
dφ
∫ ∞

0

s
(r2 + s2)3

ds

=
Er2

8π2
2π

[
−1

4(r2 + s2)2

∣∣∣∣∞
0

]

=
E

4π(2r)2
. (10)

Equation (10) retrieves the result from equation (3), in which the energy density at a receiver
located at a distance L = 2r from the source is just the energy output of the source divided by
the surface area of the sphere of radius L. We also evaluate the energy density as a function of
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the integration radius s using a dummy variable of integration ξ:

εR(r, s) =
∫ 2π

0

∫ s

0
εR(r, ξ)dξ ξ dφ =

∫ 2π

0

∫ s

0

E
8π2(r2 + ξ2)2

r2ξ

r2 + ξ2
dξ dφ

=
Er2

8π2
2π

[
−1

4(r2 + ξ2)2

∣∣∣∣s
0

]

=
E

4π(2r)2

[
1 − r4

(r2 + s2)2

]
. (11)

4.4. Simplified model of the sensitivity kernels

To derive a simplified model of the sensitivity kernels, we use the same geometry of the previ-
ous example (figures 7 and 8). We also assume a monochromatic source, for simplicity. In this
case, the signal F(r, t) recorded at the receiver can be expressed as:

F(r, t) = AR
�(r) sin [ωt +Φ(r)] , (12)

where AR
�(r) is the amplitude of the wave as a function of r; ω = 2π f is the angular frequency

(which in turn is a function of the frequency f ); and Φ(r) is the phase of the wave as a function
of r.

The choice of sine, cosine, or even of the real part of complex exponential in equation (12)

is indifferent since they only differ by a phase factor of
π

2
. Furthermore, given that any pulse

can be decomposed into a sum of trigonometric functions using the Fourier transform, it is
easy to see how that formulation could be generalized for a multi-frequency light source.

Our goal is to find expressions for AR
�(r) and Φ(r) as those two functions are crucial to find

the approximate amplitude and travel-time kernels we are searching for. By using Huygens’
principle again, F(r, t) can be thought of as the result of the superposition of the rays traveling
through each ring of light in figure 7. Therefore:

F(r, t) =
∫ ∞

0
dF =

∫ ∞

0
A(r, s) sin [ωt + φ(r, s)] ds, (13)

where dF = A(r, s) sin [ωt + φ(r, s)] ds is the contribution of each ring to the resultant signal
F(r, t); A(r, s) is the amplitude of the combined waves coming from each ring as a function of
r and s; and φ(r, s) is the phase of these same waves, also a function of r and s.

The expression for φ(r, s) is very straightforward. The phase of each path is directly related
to its travel time t(r, s) by the opposite of the angular frequency:

φ(r, s) = −ωt(r, s) = −ω
2d
c

= −ω
2
√

r2 + s2

c
, (14)

where 2d is the distance traveled from the source to the receiver as a function of r and s (figure 8)
and c is the velocity of propagation. By substituting equation (14) into equation (13) and using
the fact that ω = 2π f, we find:

F(r, t) =
∫ ∞

0
A(r, s) sin

[
2π f

(
t − 2

√
r2 + s2

c

)]
ds. (15)

Finding A(r, s) requires more effort. In section 4.3, we derived εR(r, s), which is the energy
density per unit time at the receiver as a function of r and s. Finding εR(r, s) was much easier

13
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than finding the amplitude because we did not have to worry about constructive and destructive
interference of the waves. These effects were implicitly taken into account when we combined
Huygens’ principle and conservation of energy with the effects of geometrical spreading and
refocusing at the receiver.

Now, we want to derive an expression for A(r, s) from εR(r, s). However, in equation (15),
we explicitly included a sine function whose role is to account for the interference effects.
That is crucial to compute the Fresnel zones in our model. However, it also affects AR

�(r),
which is the final amplitude measured at the receiver. Nevertheless, since εR(r, s) already
includes the interference implicitly, if we calculate A(r, s) from it and plug the result directly
into equation (15), we would be taking the interference into account twice, finding a wrong
expression for the amplitude, thus violating the conservation of energy. Therefore, A(r, s) must
include a renormalization factor to fix this:

A(r, s) = RNA◦(r, s), (16)

where RN is the renormalization factor and A◦(r, s) is the non-renormalized amplitude of the
waves coming from each ring.

The energy carried by a wave is directly proportional to the square of its amplitude.
Therefore:

AR(r, s) ∝
√
εR(r, s), (17)

where AR(r, s) is the amplitude recorded at the receiver.
For mechanical waves, the constant of proportionality that relates these two quantities also

depends on the square of the angular frequency and other physical parameters that vary accord-
ing to the kind of wave. The energy of a mechanical shear wave (e.g. an S wave), for example,
also depends on the shear modulus (potential energy) and the density of the medium (kinetic
energy). Since we are only interested in the amplitude, let us simply assume that these other
parameters are implicitly contained in the value of E. Thus:

AR(r, s) =

√
E

4π(2r)2

[
1 − r4

(r2 + s2)2

]
=

A0

4π(2r)

√
1 − r4(

r2 + s2
)2 , (18)

where A0 =
√

4πE.
It is easy to see that when s →∞, equation (18) reduces to the far-field approximation for

the amplitude (Aki and Richards 2002). In the far-field, the amplitude at the receiver decays
linearly with the distance from the source L = 2r:

AR(r) =
A0

4π(2r)
. (19)

By setting A0 = 4π in equation (18) (for simplicity), we find:

AR(r, s) =
1
2r

√
1 − r4(

r2 + s2
)2 , (20)

where AR(r, s) is the amplitude recorded at the receiver as a function of r and s.
It is important to highlight that AR(r) is not the function AR

�(r) we are looking for because
it does not account for the effects of interference explicitly. If we tried to derive the expression
for the amplitude kernel directly from equation (20), we would not see the Fresnel zones,
for example. However, since AR(r, s) correctly describes the effects of geometrical spreading

14



Eur. J. Phys. 43 (2022) 045802 C Ciardelli

and refocusing of the amplitudes at the receiver, it can be used to find A◦(r, s). AR(r, s) is the
amplitude resulting from integrating the contributions from all the rings of light (figure 7).
Hence, A◦(r, s), which is the contribution from each ring, is the partial derivative of AR(r, s)
with respect to s:

A◦(r, s) =
∂AR

∂s
=

r3(
r2 + s2

)2√
2r2 + s2

. (21)

By plugging in equation (21) into equation (16) and substituting into equation (15) results
in:

F(r, t) =
∫ ∞

0
RN

r3(
r2 + s2

)2√
2r2 + s2

sin

[
2π f

(
t − 2

√
r2 + s2

c

)]
ds

=

∫ ∞

0

RNr3 sin

[
2π f

(
t − 2

√
r2 + s2

c

)]
(
r2 + s2

)2√
2r2 + s2

ds. (22)

To extract the amplitude AR
�(r) from F(r, t), we begin by squaring both the left and the

right-hand side of equation (12) and integrating in time over the period T =
1
f

to eliminate the

dependence on t:∫ T

0
F(r, t)2 dt =

∫ T

0
{AR

�(r) sin [ωt +Φ(r)]}2dt

= AR
�(r)2

∫ T

0
sin

[
2πt
T

+Φ(r)

]2

dt

= AR
�(r)2

⎧⎪⎪⎨
⎪⎪⎩

t
2
−

sin

[
4πt
T

+ 2Φ(r)

]
8π

⎫⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣∣∣

T

0

= AR
�(r)2 T

2
. (23)

By multiplying both sides of equation (23) by
2
T

and taking the square root we find:

AR
�(r) =

√
2
T

∫ T

0
F(r, t)2dt, (24)

where F(r, t) is given by equation (22).
The final step to complete the derivation of AR

�(r) is to determine the renormalization factor
RN. As mentioned, the role of RN is to remove the implicit effects of interference in A◦(r, s).
We begin by using equation (20) to determine how large the integration radius s has to be so
that AR(r, s) is 99% of the amplitude AR(r, s →∞):

AR(r, s)
AR(r, s →∞)

= 0.99 ⇒

1
2r

√
1 − r4

(r2 + s2)2

1
2r

=

√
1 − r4

(r2 + s2)2
= 0.99. (25)
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By squaring both sides of equation (25) and rearranging, we find a biquadratic equation
in s:

r4(
r2 + s2

)2 = 1 − 0.992 ⇒ s4 + 2r2s2 −
(

0.992

1 − 0.992

)
r4 = 0. (26)

Equation (26) has only one real-positive solution given by:

s99 = r

√
100√
199

− 1, r � 0, (27)

where s99 is the integration radius as a function of r required to achieve 99% of the amplitude
AR(r, s →∞). For instance, when r = 0.5, s99 ≈ 1.234. The choice of 99% was somewhat
arbitrary but equation (27) can be generalized to any desired percentage as:

sp = r

√√√√√ 1√
1 −

( p
100

)2
− 1, r � 0, (28)

where sp is the integration radius as a function of r required to achieve a percentage 0 � p �
100 of the amplitude. The most important takeaway from equation (28) is that the integration
radius required to achieve any percentage is directly proportional to r.

Section 3.2 briefly explains Fermat’s principle as a consequence of constructive and destruc-
tive interference of waves taking all possible paths from the source to the receiver. The shorter
the wavelength λ, the smaller the deviation from the stationary path required to enter the
destructive interference zone (second Fresnel zone) and, consequently, the narrower the kernel.
Hence, the wavelength defines how much each path contributes to the final amplitude AR

�(r).
On the other hand, the conservation of energy requires that AR

�(r) should not change with λ,
only with r. However, without renormalization, the width of the first Fresnel zone would affect
AR

�(r) in equation (22) by canceling out the contribution of the waves that take a longer path.
Any wave traveling outside the first Fresnel zone has little to no impact on AR

�(r). Therefore, to
keep the amplitude independent from the wavelength, any increase in sp must be accompanied
by an equal increase in the width of the first Fresnel zone. However, because equation (28) tells
us that sp ∝ r, if λ changes, the amplitude scales by:

SC =
WF

r
, (29)

where SC is the scaling factor and WF is the width of the first Fresnel zone.
Looking at figure 8 and following Snieder (1999), the detour DT of a scattered wave

relatively to the path taken by the direct wave is:

DT = 2
√

r2 + s2 − 2r = 2r

√
1 +

( s
r

)2
− 2r

≈ 2r

[
1 +

1
2

( s
r

)2
]
− 2r, s � r

≈ s2

r
. (30)

16



Eur. J. Phys. 43 (2022) 045802 C Ciardelli

The edge of the first Fresnel zone occurs when DT =
λ

4
. Therefore:

DT =
λ

4
⇒ s2

r
=

λ

4
⇒ s = WF =

√
λr
2

⇒ SC =
1
2

√
λ

r
. (31)

To prevent scaling, RN has to be the reciprocal of SC. Thus:

RN =
1

SC
= 2

√
r
λ
. (32)

By substituting equation (32) into equation (22), we find:

F(r, t) =
2√
λ

∫ ∞

0

r
7
2 sin

[
2π f

(
t − 2

√
r2 + s2

c

)]
(r2 + s2)2

√
2r2 + s2

ds, (33)

and, according to equation (24):

AR
�(r) = 2 f

√
2
c

√√√√√√√√√
∫ T

0

⎡
⎢⎢⎢⎢⎣
∫ ∞

0

r
7
2 sin

[
2π f

(
t − 2

√
r2 + s2

c

)]
(r2 + s2)2

√
2r2 + s2

ds

⎤
⎥⎥⎥⎥⎦

2

dt. (34)

4.4.1. Amplitude sensitivity kernel. To find an expression for the amplitude sensitivity kernel,
we begin by rewriting equation (34) as a function of s:

AR
�(r, s) = 2 f

√
2
c

√√√√√√√√√
∫ T

0

⎡
⎢⎢⎢⎢⎣
∫ s

0

r
7
2 sin

[
2π f

(
t − 2

√
r2 + ξ2

c

)]

(r2 + ξ2)2
√

2r2 + ξ2
dξ

⎤
⎥⎥⎥⎥⎦

2

dt. (35)

We evaluate the integral above numerically, fixing c = 1 for simplicity. Figure 9 shows
the effect of the wavelength in the approximation by varying the values of f and figure 10
demonstrates that this model is an excellent approximation for the far-field whenever 2r � λ.

We are interested in the partial derivative of equation (35) with respect to s, which
approximates the amplitude kernel KA(r, s) using our model. Hence:

KA(r, s) =
∂AR

�

∂s
(r, s) = 2 f

√
2
c

n(r, s)
m(r, s)

, (36)
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Figure 9. Amplitude as a function of s for different wavelengths. We set r = 1/2.

Figure 10. Amplitude decay with r for different values of λ. The shorter the wavelength,
the more the decay rate approaches the linear decay expected in the far-field regime
AR(r).
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where:

n(r, s) =
∫ T

0

r
7
2 sin

[
2π f

(
t − 2

√
r2 + s2

c

)]
(r2 + s2)2

√
2r2 + s2︸ ︷︷ ︸

α(r, s, t)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∫ s

0

sin

[
2π f

(
t − 2

√
r2 + ξ2

c

)]

(r2 + ξ2)2
√

2r2 + ξ2
dξ︸ ︷︷ ︸

β(r, s, t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dt

and

m(r, s) =

√√√√√√√√√
∫ T

0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∫ s

0

sin

[
2π f

(
t − 2

√
r2 + ξ2

c

)]

(r2 + ξ2)2
√

2r2 + ξ2
dξ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2

dt

=
1

2 f

√
c
2

r−
7
2 AR

�(r, s). (37)

Equation (36) is not defined for s = 0. A reasonable solution is replacing KA(r, 0) by the
limit of KA(r, s) when s approaches zero (see appendix A for the complete derivation):

KA(r, s)|s=0 = lim
s→0

∂AR
�

∂s
(r, s) = lim

s→0
E(r, s) =

√
2
λr3

, (38)

where:

E(r, s) =
2r

7
2

(r2 + s2)2
√
λ(2r2 + s2)

. (39)

Therefore:

KA(r, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
λr3

if s = 0,

2 f

√
2
c

n(r, s)
m(r, s)

otherwise.

(40)

The fact that all paths next to that of the least time have almost identical travel times implies
that, for small values of s, the waves arrive at the receiver with nearly the same phase and con-
structively interfere, rapidly increasing the amplitude of the detected signal. As s increases, the
waves begin to cancel each other out, resulting in the negative values of KA(r, s) in figure 11.
From then on, the kernel alternates between regions of constructive and destructive interfer-
ence, known as Fresnel zones. However, the main contribution to the amplitude at the receiver,
by far, comes from the first Fresnel zone, located around the ray path. That is the reason why
the maximum amplitude sensitivity is at the ray path.
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Figure 11. Upper half of the amplitude kernels for different values of r and λ. The bottom
half is just the mirrored version of the upper one. The black dashed line shows the travel-
time curve predicted using ray theory. The red dashed line shows function E(r, s), which
is the envelope of the amplitude sensitivity kernel KA(r, s). The color palette describes
the normalized values of KA(r, s), highlighting the Fresnel zones. The kernels’ width
increase with

√
λL.

4.4.2. Travel-time sensitivity kernel. So far, we have been studying the effect of the ray paths
on the amplitude of the wave detected at the receiver. Now we continue to evaluate how much
each path contributes to the travel time of the resultant wave F(r, t). The phase is related to
the travel time by the opposite of the angular velocity −ω = −2π f. Equation (14) gives the
travel time and phase of each ray path. However, we want the travel time of the detected wave,
resultant from the interference of all possible paths. That is directly related to the phase factor
Φ(r) in equation (12). One can extractΦ(r) from F(r, t) by fixing the value of t = ti, normalizing
F(r, ti) using function AR

�(r), and taking the arcsine of the result. For ti, it is convenient to use:

ti =

(
2r
λ

mod 1

)
T. (41)

Whenever the distance between the source and the receiver is a multiple of the wavelength,
ti is zero. Otherwise, ti is a fraction of the period T corresponding to the remainder of the integer
division of the distance 2r by the wavelength λ. That guarantees that we are always evaluating
F(r, t) at the beginning of the cycle, regardless of the distance from the receiver. On the other
hand, after the normalization by AR

�(r), F(r, ti) is constrained on the interval [−1, 1], which is
the domain of the arcsine function. Therefore:

Φ(r) = arcsin

[
F(r, ti)
AR

�(r)

]
. (42)
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Now, we convert the Φ(r) to travel time by dividing both sides of equation (42) by −ω and

adding
2r
c

, which is the minimum travel time from the source to the receiver, to the right-hand

side. Putting everything together, we find the expression for the travel time T(r):

T(r) =
2r
c

− 1
2π f

arcsin

[
F(r, ti)
AR

�(r)

]
. (43)

Analogously to equation (35), we also define T as a function of s:

T(r, s) =
2r
c

− 1
2π f

arcsin

[
F(r, s, ti)
AR

�(r, s)

]
, (44)

where:

F(r, s, t) =
2√
λ

∫ s

0

r
7
2 sin

[
2π f

(
t − 2

√
r2 + ξ2

c

)]
(
r2 + ξ2

)2√
2r2 + ξ2

dξ. (45)

Equation (44) is not defined at s = 0 as the factor
F(r, s, ti)
AR

�(r, s)
results in the indeterminate form

0/0. Again, we replace the value of T(r, 0) by adopting the limit of T(r, s) for s → 0 (see the
complete derivation in appendix B). Therefore:

T(r, s) =

⎧⎪⎪⎨
⎪⎪⎩

2r
c

if s = 0,

2r
c

− 1
2π f

arcsin

[
F(r, s, ti)
AR

�(r, s)

]
otherwise.

(46)

The travel-time kernel KT(r, s) is given by the partial derivative of (46) with respect to s:

∂T
∂s

(r, s) = − 1
2π f

1√
1 −

[
F(r, s, ti)
AR

�(r, s)

]2

∂

∂s

[
F(r, s, ti)
AR

�(r, s)

]

=
1

2π f

F(r, s, ti)
∂AR

�

∂s
(r, s) − ∂F

∂s
(r, s, ti)AR

�(r, s)

AR
�(r, s)2

√
1 −

[
F(r, s, ti)
AR

�(r, s)

]2
. (47)

Once again, we found an expression that is not defined for s = 0. However, in figure 12 it
is easy to see that as s approaches zero, the derivative of T(r, s) also approaches zero. That can
be formally proved by computing the limit of equation (47) for s → 0, as we did for the former
expressions. Nevertheless, the complete derivation is too extensive and falls outside the scope
of this paper. Thus:

KT (r, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if s = 0,

1
2π f

F(r, s, ti)
∂AR

�

∂s
(r, s) − ∂F

∂s
(r, s, ti)AR

�(r, s)

AR
�(r, s)2

√
1 −

[
F(r, s, ti)
AR

�(r, s)

]2
otherwise,

(48)
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Figure 12. Travel time as a function of s for different wavelengths. We set r = 1/2.

where ti is given by equation (41).
In the previous section, the fact that the paths next to the stationary one had nearly identi-

cal travel times, making them arrive in phase, explained why the amplitude sensitivity grows
rapidly for small values of s. However, for the very same reason, the travel-time sensitivity in
this region is minuscule (figure 13). When all waves arrive aligned, each new wave does not
change the phase of the resultant wave, explaining the zero sensitivity at the ray path. As s
increases, the new waves arrive with a progressively larger phase delay. As a result, we enter
the destructive interference zone, gradually reducing the amplitude and moving the resultant
wave backward. In that region, the travel-time sensitivity reaches its maximum. However, as
s increases even further, the phase difference between the resultant wave and the new arriving
waves becomes larger than π. When that happens, the new waves begin to pull the resultant
wave back to its original position, originating the negative values of KT(r, s). From then on, the
cycle repeats over and over again, originating the higher-order Fresnel zones.

It is important to realize that the larger the phase difference between each new wave and the
resultant wave (up to π), and the smaller the amplitude difference between them, the larger the
effect a new wave has on the travel time of the detected signal. The combined effect of these
two mechanisms results in the zero sensitivity at the ray path and maximum in the region next
(but not very close) to it.

5. Colab notebook

A Colab notebook implementing the most important formulas is available at: https://colab.
research.google.com/github/caiociardelli/Sensitivity_Kernels/blob/main/Amplitude_and_
travel_time_sensitivity_kernels.ipynb.
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Figure 13. Upper half of the travel-time kernels KT(r, s) for different values of r and λ.
The meaning of the symbols and colors is the same as in figure 11, with the difference
that there is no equation describing the envelope. In the middle of the kernels (ray path),
we observe a region of zero sensitivity.

6. Discussions

For simplicity, the model derived in this paper shows the sensitivity with respect to the distance
s from the ray path, not to velocity perturbations, such as the kernels in figure 1. That is why the
first Fresnel zones in figures 11 and 13 are positive, unlike the first Fresnel zones in figure 13.
Furthermore, the exact computation of the sensitivity kernels would require taking into account
all possible paths from the source to the receiver, even the craziest ones. In the derivation, only
paths that can be decomposed into two straight lines of equal length were considered, which is
far more restricted than an accurate computation would require. However, it suffices that this
simple approach provided the pivotal conditions required to mimic a more realistic scenario
and divert from the straight-line path predicted by ray theory, which would render the model
useless. Despite its simplicity, the model correctly predicts the Fresnel zones and the rate with
which their width increases with

√
λL. The fact that the amplitude decays linearly with the

distance came as no surprise since we imposed this during the derivation of the equations. It
is also worth noting that the approximation used in this paper could be made progressively
more accurate by adding more virtual planes to the formulation. If instead of one, we use two
parallel planes, for example, then the rays would have much more degrees of freedom to bend.
With infinitely many planes spanning the entire space, we would be considering all possible
paths.

7. Conclusion

Despite its limitations, the formulation here presented correctly predicts the most relevant
features of sensitivity kernels, including the fact that travel-time kernels are hollow. The
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step-by-step derivation and relatively easy equations should be understandable by an under-
graduate student with a reasonable knowledge of classical physics and calculus. This work
provides new insight into the banana-doughnut paradox, helping Earth scientists understand
the finite-frequency theory, increasingly used in seismology and seismic exploration.
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Appendix A. Amplitude kernel at the ray path

Here we show the complete derivation to find a representative value for the amplitude kernel
when s = 0, which corresponds to the ray path.

We know that:

KA(r, s)|s=0 = lim
s→0

∂AR
�

∂s
(r, s) = 2 f

√
2
c

lim
s→0

n(r, s)
m(r, s)

=
8 f 2r

7
2

c
lim
s→0

n(r, s)
AR

�(r, s)
.

(49)

By substituting s = 0 into equation (49), we get an indeterminate form 0/0. Hence, that limit
qualifies for the usage of the L’Hôpital’s rule:

lim
s→0

∂AR
�

∂s
(r, s) =

8 f 2r
7
2

c
lim
s→0

∂n
∂s

(r, s)

∂AR
�

∂s
(r, s)

=
8 f 2r

7
2

c

lim
s→0

∂n
∂s

(r, s)

lim
s→0

∂AR
�

∂s
(r, s)

. (50)

By multiplying both members of equation (50) by lims→0
∂AR

�

∂s
(r, s), we find:

[
lim
s→0

∂AR
�

∂s
(r, s)

]2

=
8 f 2r

7
2

c
lim
s→0

∂n
∂s

(r, s), (51)

where:

∂n
∂s

(r, s) =
∂

∂s

∫ T

0
α(r, s, t)β(r, s, t)dt

=

∫ T

0

[
∂α

∂s
β(r, s, t) + α(r, s, t)

∂β

∂s

]
dt, (52)

where α(r, s, t) and β(r, s, t) are given by equation (37).
By the addition rule for limits:

lim
s→0

∂n
∂s

(r, s) =
∫ T

0

{
lim
s→0

[
∂α

∂s
β(r, s, t)

]
+ lim

s→0

[
α(r, s, t)

∂β

∂s

]}
dt. (53)
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From equation (37), it is easy to see that s → 0 ⇒ β(r, s, t) → 0 and, albeit less obvious,

s → 0 ⇒ ∂α

∂s
→ 0 too. Therefore, the first limit of equation (53) vanishes.

For the second term, remembering that
∂

∂s

∫ s

0
f (ξ)dξ = f (s):

α(r, s, t)
∂β

∂s
=
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0
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7
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c
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c
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dt

=
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r
7
2 sin2
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dt

=

r
7
2

[
sin

(
8π f
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− sin

(
8π f
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c
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)
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r
7
2

2 f
(
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) . (54)

Substituting the result of equation (54) into equation (51):

[
lim
s→0

∂AR
�

∂s
(r, s)

]2

=
8 f 2r

7
2

c
lim
s→0

r
7
2

2 f (r2 + s2)4(2r2 + s2)

=
4 f
c

lim
s→0

r7

(r2 + s2)4(2r2 + s2)
. (55)

Taking the square root of both sides of equation (55):

lim
s→0

∂AR
�

∂s
(r, s) = lim

s→0

2r
7
2(

r2 + s2
)2√

λ(2r2 + s2)︸ ︷︷ ︸
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s=0

=

√
2
λr3

.

(56)

Appendix B. Travel-time function at the ray path

In this appendix, we show how to calculate the limit of T(r, s) as s approaches zero, used to
replace the singularity at s = 0.
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Again, we begin by applying L’Hôpital’s rule:

lim
s→0
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Noticing that
2r
λ

mod 1=
2r
λ

−
⌊

2r
λ

⌋
, where

⌊ ·
·
⌋

denotes a floor division, we have:

lim
s→0
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