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ABSTRACT

The Figueira Branca Suite is a layered mafic-ultramafic complex in the Jauru Terrane,
southwest Amazon Craton. New lithological, geochemical, gamma-ray and potential field data,
integrated with geological, isotope and paleomagnetic data are used to characterize this pulse
of Mesoproterozoic extension-related magmatism. The Figueira Branca Suite formed through
juvenile magma emplacement into the crust at 1425 Ma, coeval with the later stages of the
Santa Helena Orogen. In three papers, this suite was studied from microscopic to continental
scales. First, the Figueira Branca suite was analysed through thin sections to determine the
influence of inaccurate constraints in magnetic and gravity field modelling. Then, the extent of
magmatism within the suite was delimited to four bodies to the north of Indiavai city, MT -
Brazil, with potential fields and gamma-ray data. Modelling gravity and magnetic field data
indicated that the anomalous sources are close to the surface or outcropping. These intrusions
trend northwest over 8 km, with significant remanent magnetization that is consistent with
published direction obtained through paleomagnetic data. The increasing enrichment of LREE
in the gabbroic bodies of the suite was interpreted as evidence of progressive fractionation of
the magma. The emplacement, mineralogy and geochemical signature point towards a back-
arc extension tectonic framework in the later stages of the Santa Helena Orogen. The third part
of the work consisted on evaluating reconstructions of the Paleo-Mesoproterozoic
supercontinent Nuna with magnetic field data. The global magnetic anomaly map, EMAG2,
allowed to observe continuity of magnetic lineaments and regimes in domains of similar ages
in different cratons (Amazon, Baltica, West Africa and North China). These magnetic features
indicated the theory which the magnetic field best supported, and suggested the regional
environment where the Jauru Terrane was inserted by the time of the intrusion of the Figueira

Branca Suite.
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RESUMO

A Suite Figueira Branca ¢ um complexo mafico-ultramafico no Terreno Jauru, sudoeste
do Craton Amazobnico. Novos dados litologicos, geoquimicos, de raios gama e de campos
potenciais, integrados com dados geologicos, isotdpicos e paleomagnéticos, foram utilizados
para caracterizar of pulso magmatico Mesoproterozdico da suite vinculado a um ambiente
distensivo. A Suite Figueira Branca foi formada pela intrusdo na crosta de um magma juvenil
em 1425 Ma, mesma idade dos estagios tardios da orogenia Santa Helena. Em trés artigos, esta
suite foi estudada em escalas desde microscopicas a continentais. Primeiramente, a Suite
Figueira Branca foi analisada através de laminas para determinar a influéncia da utilizagdo de
vinculos errados ou inadequados na modelagem de dados de campos magnéticos e
gravimétricos. Em seguida, a extensdo do magmatismo pertencente a suite foi delimitado, via
campos potenciais e gamaespectrometria, a quatro corpos ao norte da cidade de Indiavai, MT
- Brasil. A modelagem dos dados de campos gravimétrico € magnético indicaram que as fontes
dos sinais geofisicos se encontram em horizontes rasos ou aflorantes. Estas intrusdes
apresentam um alinhamento noroeste por mais de 8§ Km, com magnetiza¢do remanente
significativa consistentes dire¢des publicadas em estudos paleomagnéticos. O crescente
enriquecimento de Elementos de Terras-Raras leves em corpos gabrdicos da suite foi
interpretado como evidéncia de fracionamento progressivo do magma. A instrusdo, a
mineralogia e a assinatura geoquimica indicaram um ambiente de extesdo de retro-arco durante
os estagios finais da orogenia Santa Helena. A terceira parte deste trabalho consistiu na
avaliacdo de reconstrucdes através de dados de campo magnético do supercontinente paleo- a
mesoproterozéico Nuna. O mapa global de anomalia magnética, EMAG2, permitiu observar
continuidades de lineamentos e regimes magnéticos em dominios de idades similares em
diferentes cratons (Amazonico, Baltico, Oeste Africano, do Norte da China). Estas
propriedades magnéticas indicaram a teoria que melhor se adequava aos dados de campo
magnético, e sugeriram o ambiente regional onde o Terreno Jauru se encontrava na época da

intrusdo da Suite Figueira Branca.

Palavras-Chave: Craton Amazonico, Suite Mafica, Campos Potenciais, Geoquimica, Nuna
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1. Introduction

How much a single and considerably small intrusive suite can tell with geology and
geophysics? How much can it tell about common mistakes done even by specialists in
geophysical modelling? What can it reveal about its own features and history? About the
environment that hosts it and, ultimately, lead to better understand the Earth evolution? This

thesis brings a set of three correlate studies seeking to answer these questions.

The studies that compose this thesis evaluate the Figueira Branca Mafic-Ultramafic
Suite, from microscopic to continental scale. These studies were submitted to peer-reviewed
journals, and are currently under review. The first manuscript discusses the influence of
inaccurate constraints in magnetic and gravity field modelling, and why analysing samples
microscopically is not only recommendable, but of major importance for a reliable geophysical
modelling. The Figueira Branca Suite was used as background for this analysis, given the

variable condition and petrophysical properties of its samples.

The Amazon Craton is divisible into six geochronological provinces: the Archean
Central Amazon, and the Proterozoic provinces of Maroni-Itacaiunas, Ventuari-Tapajds, Rio
Negro-Juruena, Rondonian-San Ignacio and Sunsds-Aguapei (Fig. 1.1a) (Tassinari &
Macambira, 1999; Teixeira et al., 2010). The southern portion of the Rio Negro-Juruena (1.78
— 1.55 Ga) province includes the Jauru Terrane (1.78 — 1.40 Ga), which contains
Paleoproterozoic basement rocks and the Mesoproterozoic Cachoeirinha and Santa Helena
orogens (Fig. 1.1b) (Bettencourt et al., 2010). The Alto Jauru Group, part of the
Paleoproterozoic basement of the Jauru Terrane, hosts the Figueira Branca Mafic-Ultramafic

Intrusive Suite.
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polygon delimits the area of Fig. 1b. (b) Southwest of the Rio Negro-Juruena and Rondonian-San

Ignacio provinces of the Amazon Craton. The Figueira Branca Suite is represented in dark blue.



The Figueira Branca Intrusive Suite is a 1425 + 8 Ma layered mafic-ultramafic complex
composed from bottom to top of dunite, pyroxenite, gabbro-norite, anorthosite, thin layers of
troctolite, and olivine-gabbro (Teixeira et al., 2011). Isotope data from its southern body
indicate a juvenile source that crystallized during the later stages of the Santa Helena Orogeny
(Tassinari, Bettencourt, Geraldes, Macambira, & Lafon, 2000; Teixeira et al., 2016; Teixeira

etal., 2011).

The second work describes the Figueira Branca Intrusive Suite geophysical signature
through potential field models, and geochemically with major, trace and Rare-Earth element
analyses. It explores the magnitude of the magmatism that generated the suite, analysing the
terrane that hosts it, the parental magma, and the tectonic framework involved. The potential
field models displayed a northwest-southeast elongation in four bodies immediately to the
north of Indiavai city. Geochemical data confirmed the extensional setting proposed by

Teixeira et al. (2011) through isotope data.

The third part of the thesis develop a continental scale analysis of the Amazon Craton
by the time of the development of the Santa Helena Orogen and intrusion of the Figueira Branca
Suite, from 1.6 to 1.4 Ga (Fig. 1.1b). The location of the Amazon Craton during the Paleo- to
Mesoproterozoic supercontinent Nuna gave insights of the tectonic framework that the craton
was subjected during the intrusion of the Figueira Branca Suite. This location is currently under
debate, so as the configuration of the Nuna supercontinent. Three reconstructions of Nuna were
chosen to evaluate the position of the Amazon Craton, of Mertanen and Pesonen (2012), which
is based on paleomagnetic data; of Pisarevsky, Elming, Pesonen, and Li (2014), based on
paleomagnetic and geological constraints; and of Pehrsson, Eglington, Evans, Huston, and
Reddy (2015) who integrated paleomagnetic and geological data with ore deposit features (Fig.
1.2). Using magnetic field data, it was possible to recognize magnetic regimes and lineament
patterns in the Amazon Craton, and nearby blocks according with the reconstructions. This

3



dataset was the basis to evaluate which theory was better supported by the magnetic field. The
better supported theory, by consequence, proportionated evidences about what was occurring
with the southwest of the Amazon Craton when the Figueira Branca Suite intruded the Jauru

Terrane.

Nuna Reconstructions

(a) Mertanen and Pesonen (2012) (b) Pisarevsky et al. (2014)
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Fig. 1.2 - Reconstructions of Nuna proposed by (a) Mertanen and Pesonen (2012), (b) Pisarevsky et

al. (2014), and (c) Pehrsson et al. (2015).



The scale of the problems and the proposed answers increase from the first to the third
part of the thesis. The three manuscripts that compose this thesis were submitted to the journals
Tectonophysics, Geophysical Journal International and Precambrian Research. The final
chapter presents the major conclusions obtained through the results generated, arguing about

the questions raised here.

In parallel to this project, the PhD student worked in different projects and published
as author and co-author four papers. A fifth paper was submitted and is currently under review.

The published and submitted papers are available in the Attachment 1 of this thesis.



2. Manuscript 1: Effects of inaccurate constraints in magnetic and gravity field
modelling

Starting in small scales, this chapter presents the importance of not only having
constraints for modelling, but having them accurate. Measuring the properties that are going to
be modelled is the most common procedure to define constraints for modelling. However,
simple measurements without a deeper mineralogical analysis can produce inaccurate
constraints and compromise the modelling. This manuscript shows how inaccurate magnetic
susceptibilities and densities influence in the result of a joint magnetic and gravity modelling
using two datasets: one synthetic, to observe the effective difference between using the correct
and the inaccurate constraints; and one real dataset, using the Indiavai anomaly (the southern

body of the Figueira Branca Suite) as background for the analysis.



Geophysical Journal International

Geophysical

Journal

International

Effects of inaccurate constraints in magnetic and gravity

field modelling

Journal:

Geophysical Journal International

Manuscript ID

GJI-S-17-0112

Manuscript Type:

Research Paper

Date Submitted by the Author:

31-Jan-2017

Complete List of Authors:

Louro, Vinicius; Instituto de Astronomia, Geofisica e Ciéncias Atmosféricas
da Universidade de Sao Paulo, Geophysics Department; University of St.
Andrews, Department of Earth Sciences

Cawood, Peter; University of St. Andrews, Department of Earth Sciences
Mantovani, Marta; Instituto de Astronomia, Geofisica e Ciéncias
Atmosféricas da Universidade de S&do Paulo, Geophysics Department

Keywords:

Gravity anomalies and Earth structure < GEODESY and GRAVITY, Magnetic
anomalies: modelling and interpretation < GEOMAGNETISM and
ELECTROMAGNETISM, Numerical modelling < GEOPHYSICAL METHODS,
Magnetic mineralogy and petrology < GEOMAGNETISM and
ELECTROMAGNETISM




Page 1 of 33

O©CoOoO~NOOPEWN-

10

11

12

13

14

15

16

17

18

19

20

21

Geophysical Journal International

Effects of inaccurate constraints in magnetic and gravity field modelling

Vinicius Hector Abud Louro'?, Peter Anthony Cawood’, Marta Silvia Maria Mantovani'

! Instituto de Astronomia, Geofisica e Ciéncias Atmosféricas, Universidade de Sdo Paulo, Sdo Paulo,

Brazil.

2 Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, KY 16

9AL, UK.

E-mails: vilouro@usp.br, pac20@st-andrews.ac.uk, msmmanto@usp.br

Corresponding author: Vinicius Hector Abud Louro. E-mail: vilouro@usp.br
Date of Submission: 29 January 2017
ORCID: Louro, V.H. A.: 0000-0003-3430-4507

Cawood, P. A.: 0000-0003-2357-0068

Mantovani, M. S. M.: n/a



O©CoONOOOAPRWN -

22

23

24
25
26
27
28
29
30
31
32
33

34

35

36

37
38

39
40
41
42
43
44

45

46

47

Geophysical Journal International

Summary

Modelling potential fields is a common procedure in geophysical exploration. The nature and
type of data used to constrain the model determine the feasibility and viability of the output and hence
the ability of the model to provide a valid representation of reality. This paper presents a set of
models, from synthetic and real cases that were used to investigate how poorly defined or inaccurate
constraints affect the results of potential field modelling. The staged-inversion methodology was used
in the investigation, and four approaches were modelled for synthetic data and two approaches for the
real data. The real data assessed a mafic-ultramafic intrusion in the southwest Amazon Craton.
Unsurprisingly, the results indicate that the use of the correct magnetic susceptibility and density
values, and keeping them fixed during staged inversion produces the best model. However, when only
limited data are available to constrain the modelling, acceptable results can still be achieved if the

process is rigorously executed.

1. Introduction

Modelling of data is a common component of most geophysical studies and facilitates the
resolution of poorly, or non-, exposed geological bodies and structures. The quality of the geophysical
model (i.e. its ability to accurately represent a body or structure) is highly dependent on the quality of
data constraints. The constraints can be geological, geophysical, geochemical, or any kind of
information that limits the possibilities and/or ambiguities in the geophysical methodology. Here we
discuss the effects that inaccurate magnetic susceptibilities and densities can cause in gravity and

magnetic field modelling, respectively.

To analyse the effects of inaccurate constraints, we have worked with synthetic and real data

sets. The constraints used for the modelling were obtained from potential field data, hand samples and

9
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thin-sections. For potential field models, the constraints were the lateral extent of a body, the depth to
the top of the source of the signal and, in the magnetic field case, estimates of the total magnetization.

For the real data sets, hand samples and thin-sections provided additional constraints.

For assessment of synthetic models using gravity and magnetic data we used two sets of
parameters for each case. The differences between the sets were the initial magnetic susceptibility and
density. In one set, we used the correct values, whereas in the second set, we used half the actual
value for each property (e.g. correct density contrast: 0.24 g/cm’, half the value: 0.12 g/cm®). In the
real world, smaller values for magnetic susceptibility and density can reflect weathering, a common

effect on rock units, especially in tropical and equatorial areas, and alteration.

The real cases scenarios presented in this study are for the Indiavai igneous body, from the
Figueira Branca mafic-ultramafic suite, Mato Grosso, Brazil. The suite lies on the southwest of the
Amazon Craton. Two situations were considered. In the first the available data included potential field
information, hand samples, and magnetic susceptibility and density measurements, which is similar to
parameters routinely available in the processing and modelling of potential fields. In a second

situation, thin-section data were used to further constraint the input data.

2. Methodology

The magnetic modelling used a fixed direction of total magnetization, estimated through the
MaxiMin method (Fedi et al. 1994). Cordani and Shukowsky (2009) implemented the MaxiMin
technique in a MATLAB algorithm. This algorithm selects 30 pairs of inclination and declination
angles and performs RTP filtering from the residual magnetic field with each pair. The resulting grid
that presents the most negative values is discarded, and a new iteration is initiated. This process is
repeated until the 30 pairs of values do not differ from each other by more than a predefined error (5°

in this work) or the process reaches a predefined maximum number of iterations (4000). Lateral limits

10
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of the body (real and synthetic) were defined by their gradient of horizontal derivatives of the
magnetic field reduced to the pole. These fields were preferred over the gravity fields due the larger
amount, and better spaced, magnetic data than the gravity fields. The depths to the top of the potential
field anomaly sources, in the synthetic cases, were estimated using Euler Deconvolution (Reid et al.
1990). In the real case, the depth estimation was not necessary because the Indiavai igneous body

outcrops, therefore the depth to the top of the initial model was considered zero.

The modelling was performed using the staged-inversion methodology (Foss 2006). The
modelling took two phases: one using a block body as the initial model, and one using prisms sliced
from the body modelled in the first phase as the initial model. The prisms were parallel and centred on
the north-south surveyed lines, with a fixed 500 m width in east-west direction. The steps of the first
phase of staged-inversion consisted of: (1) varying the amplitude of the total magnetization and depth
extent of the block model; (2) varying the amplitude of the total magnetization, depth extent and
horizontal position; (3) varying the amplitude of the total magnetization, depth extent, horizontal
position and vertex movements in the north-south direction; (4) varying the parameters of the
previous stage plus the position of the vertices of the model in east-west direction; and (5) varying the
previous parameters and the magnetic susceptibility (in the magnetic inversion), or the density (in the
gravity inversion). In the second phase, the modelling using the prisms had two differences: instead of
varying the depth extent in all stages, the vertices were allowed to vary their positions in vertical

direction, and stage (4) was skipped.

The quality of the modelling was assessed by the “inversion confidence” (Pratt 2006), where
the confidence that the modelled body exists in the studied area varies from 0 to 100%. This interval

of confidence is expressed by the root mean square value (rms-error).
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3. Synthetic Model

A synthetic block model was created and it’s magnetic and gravity fields calculated (Fig. 1,
Table 1). This model presents a significant remanent magnetization, and it is exposed to an
environment of negligible magnetization (0.0001 S.I.) and density of 2.67 g/cm’. The calculated fields
were then the starting point for evaluating the effects of inaccurate constraints using the staged-

inversion methodology.

a b

SN LSS e

—=a e

7 Viiewi Top = View: South

S
= .

L \k

= View: West B By

7

View: Perspective

Fig. 1 — Synthetic model used in the experiments in the view: (a) top, (b) south, (c) west, and (d)

perspective. The model parameters are described in Table 1.
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Declination and J to the Intensity.

Shape Block

Size (E-W) (m) 3000

Size (E-W) (m) 2000

Depth Extent (m) 2000

Depth (m) 200

Density (g/cm’) 2.94

Magnetic Susceptibility (S.1.) 0.05

Magnetization Inclination Declination Intensity
Induced Magnetization -11.3° 346.9° 0.95 A/m
Remanent Magnetization 49.6° 199.4° 4.39 A/m
Total Magnetization 56° 213° 3.8 A/m

Four experiments were undertaken to model the synthetic fields (Fig. 2). In two experiments

the magnetic susceptibility and density were fixed, discarding step (5) of the staged-inversion,

whereas for the other two experiments, these parameters were varied. In each of the two sets of

experiments, one experiment started with the correct values of magnetic susceptibility and density,

and the other started with half the actual contrast of both parameters with the background (Fig. 3).

a 324000

8292000

8288000

B284000

324000

1295 966 703 -440 176 87 284 482 679 77 1271
N | [ [ [ nT

1000 0 1000
P —

(maters)

328000 332000 336000

000Z6Z8

1

|

1
0000928

000¥RZ9
8284000

323000 332000 335000 324000

328000

Synthetic Model

1000 _0 1000
e
Magnetic Field {meters)

004 094 183 273 363 453 543 633 723

312000

238000
8.80

Synthetic Model
Grmvity Flaid

mGal

Fig. 2 — (a) Magnetic and (b) gravity fields of the synthetic body.
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Correct initial k and p

— Fixed x and p

Half of the actual «
and p contrasts

Synthetic
Model

Correct initial k and p

— Freex and p

Half of the actual «
and p contrasts

Fig. 3 — Scheme of the synthetic experiments treating the role of the magnetic susceptibility and

densities in the staged-inversion. k represents the magnetic susceptibility and p the density.

The MaxiMin method produced the inclination 55.6° and declination 201.9° (0950,=5.0°),
which are 0.22% and 3.25% different respectively, from the actual total magnetization direction. The
field reduced to the magnetic pole showed good approximation to the shape of the body (Fig. 4a), and
was positive and centered over the location of the anomaly. The lateral limits obtained with the
horizontal gradient of the RTP-filtered field showed adequate compatibility with the model lateral
limits (Fig. 4b). The depths obtained through Euler Deconvolution varied from 19 m to 362 m, but
had the majority of solutions around 200 m (Fig. 4c and d) consistent with the depth to the top of the
original model (Table 1). The structural index used was 0, with the window size of 375 m. Table 2

shows the initial model parameters used in the staged-inversion.
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Table 2 — Initial parameters used in the synthetic data modelling. In the magnetization fields, I refers

to inclination, D to declination and J to the intensity.

Shape Tabular

Size (E-W) (m) 3000

Size (E-W) (m) 2000

Depth Extent (m) 1000

Depth (m) 200

Density (g/cm’) 2.94 2.805 (half contrast)
Magnetic Susceptibility (S.1.) 0.05 0.025 (half contrast)
Magnetization Inclination Declination Intensity
Induced -11.3° 346.9° 0.5 A/m
Remanent 43.2° 186.2° 1.3 A/m
Total 55.6° 201.9° 1.0 A/m

The inversions showed low residuals: 4.0% in the worst case (Table 3). However, low
residuals do not necessarily mean that an inversion was successful. The inverted models vary
significantly in their physical properties (when allowed), shape and volume (Fig. 5). Model 1 (Fig. 5a
and b), in which susceptibility and density were kept fixed with the correct values, reproduced the
original model with reduced errors. The difference between the volume of Model 1 and the original
model was 1.48 km® (12.3%) and the top of the model was kept around 200 m below the surface. The
magnetization vectors differed less than 8° in direction and 0.1 A/m in intensity from the original,

with an ays, of 1.27° for the remanent magnetization vector.

Model 2 (Fig. 5c and d), with magnetic susceptibility of 0.025 and density of 2.81 g/cm’
fixed, achieved directions of the magnetic vectors as close to the original model as Model | (Table 3,
Fig 5a and b). Other features however, were not as well-resolved as in Model 1. The volume of Model
2 was 15.74 km?® larger than the actual volume, and the depth extent overestimated to compensate the
reduced susceptibility and density (Fig. 5c and d). The block model had its vertex spread in the east-
west direction to an area larger than the original model after the first inversion process. This spread
resulted in the addition of two more sections than necessary to represent the original model, and

resulted in the much larger volume.
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Table 3 — Inversion results for the models 1 to 4. k and p represent the magnetic susceptibility and the

density, respectively.

Geophysical Models
Background (Host-rock)
Avg Mag Suscep 0.001 (SI)
Avg Density 2.67 g/cm?
Model 1: Fixed k and p — Correct k and p
Avg Mag Suscep 0.05 (SD) Total Volume 13.48 km?
Avg Density 2.94 g/em? Difference of Volume | 1.48 km?
Magnetic and Gravity Fields Inversions

Magnetization Induced Total (a5, = 5.0°) Remanent (dos5, =

1.27°)
Inclination (°) -11.6 55.6 48.4
Declination (°) 346.9 201.9 191.5
Intensity (A/m) 0.9 3.8 4.4
RMS-Mag (%) 0.7 # of Points 78832
RMS-Grav (%) 0.5 # of Points 78832

Model 2: Fixed k and p — Half of the correct k and p

Avg Mag Suscep 0.025 (SI) Total Volume 27.74 km?®
Avg Density 2.81 g/cm? Difference of Volume | 15.74 km®
Magnetic and Gravity Fields Inversions
Magnetization Induced Total (ayse, = 5.0°) Remanent (ayse, =
9.4°)
Inclination (°) -11.6 55.6 49.1
Declination (°) 346.9 201.9 192.4
Intensity (A/m) 1.3 2.1 2.5
RMS-Mag (%) 1.6 # of Points 78832
RMS-Grav (%) 4.0 # of Points 78832
Model 3: Free x and p — Correct k and p
Avg Mag Suscep 0.13 (SD) Total Volume 12.98 km?
Avg Density 2.92 g/em? Difference of Volume | 1.98 km*
Magnetic and Gravity Fields Inversions
Magnetization Induced Total (ase, = 5.0°) Remanent (s, =
13.9°)
Inclination (°) -11.6 55.6 38.9
Declination (°) 346.9 201.9 182.7
Intensity (A/m) 2.5 3.5 54
RMS-Mag (%) 1.5 # of Points 78832
RMS-Grav (%) 2.1 # of Points 78832
Model 4: Free k and p — Half of the correct k and p
Avg Mag Suscep 0.09 (SI) Total Volume 19.45 km?
Avg Density 2.81 g/cm? Difference of Volume | 7.45 km?®
Magnetic and Gravity Fields Inversions
Magnetization Induced Total (a5, = 5.0°) Remanent (095, =
12.2°)
Inclination (°) -11.6 55.6 40.3
Declination (°) 346.9 201.9 183.7
Intensity (A/m) 3.1 2.7 3.9
RMS-Mag (%) 1.0 # of Points 78832
RMS-Grav (%) 1.1 # of Points 78832
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The inversion of Model 3 (Fig. 5e and f) started with the correct properties (magnetic
susceptibility and density), and the inversion of Model 4 (Fig. 5g and h) with magnetic susceptibility
of 0.025 (S.1.) and density of 2.81 g/cm’. These features were allowed to vary during the inversion.
The result for Model 3 was a body with volume and shape close to the original model (1.98 km?
larger, Fig. 5e and f). In the Model 4 inversion (Fig. 5g and h), a 7.45 km?® higher disparity to the
original model was found. As in Model 2, the lateral spread of the block model after the first inversion
process took to the creation of more north-south sections than necessary in models 3 (1 section) and 4
(2 sections). In both cases, the additional sections were displaced to shallower or much deeper
positions than the remaining sections (Fig. 5e to h). The additional section in Model 3, displaced to a
deeper horizon, had significantly reduced magnetic susceptibility and density, making its contribution

to the gravity and magnetic fields insignificant (Figs. 6 and 7).

In Model 4 (Fig. 5g and h), the western additional section had the same behaviour as the
additional section of Model 3 (Fig. 5e and f), whereas the eastern additional section was displaced to
shallower depth. The easternmost additional section, and the second westernmost section, of Model 4
had increased magnetic susceptibility to 0.30 (S.I.), which caused the decrease of magnetic
susceptibility in the remaining sections to compensate the field. The additional eastern section had a
decrease in density, diminishing its contribution to the gravity field, whereas the rest of the sections

showed minimal variation near the density value of the original model.
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Fig. 6 — Magnetic and residual magnetic fields, respectively, of Model 1 (a and b), Model 2 (c and d),
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The distribution of magnetic susceptibilities, and as a consequence magnetization, were
severely affected in both models 3 and 4 (Fig. 5e to h). Higher magnetic susceptibilities and
magnetizations were concentrated in three (Model 3, Fig. 5e) and two (Model 4, Fig. 5g) north-south
sections. This concentration caused significant decrease in physical properties in the other sections of
both models. The highest values of magnetic susceptibility were up to 0.28 and 0.30 (S.I.), six times
higher than the original model (Table 2). The densities had less drastic lateral change, with values that

approximated to the original model (Table 2 and 3).

The residual fields (Figs. 6 and 7) indicated low values, with local significant anomalies that
usually represented the compensation of volume in Model 2 and the additional sections in models 3
and 4. The residuals of the magnetic and gravity fields of Model 1 were considerably low, indicating

good solutions for the modelled field.

4. Real Case

4.1. Geological Context

Lying in the southwest of Mato Grosso State, Brazil, the Jauru Terrane contains the Alto
Jauru Group and the Alto Guaporé Metamorphic Complex (Souza et al. 2009; Matos ef al. 2009). The
Alto Jauru Group (1760 to 1720 Ma) (Monteiro et al. 1985; Bettencourt et al. 2010) comprises gneiss,
migmatites and the Cabagal, Araputanga and Jauru meta-volcanosedimentary sequences. The Alto
Guaporé Metamorphic Complex (1790 to 1740 Ma) (Menezes 1993) is characterized by orthogneiss
intruded into supracrustal volcanosedimentary sequences, both metamorphosed to greenschist or

amphibolite facies (Bettencourt ez al. 2010).

The Figueira Branca Suite (Fig. 8) is a layered mafic-ultramafic complex composed of dunite,

pyroxenite, gabbro-norite, anorthosite, troctolite, and olivine-gabbro (Teixeira et al. 2011). The
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crystallization age of the Indiavai gabbro, the southernmost intrusion of the Figueira Branca Suite,
was dated by SHRIMP U-Pb zircon at 1425 + 8 Ma. Ar-Ar dating on biotites yielded plateau ages of
1275 + 4 Ma and 1268 + 4 Ma, which were evaluated as minimum ages for regional cooling (Teixeira
etal 2011).

-58°35’
I LEGEND

JAURU TERRANE

- Figueira Branca Suite:  Dunite, pyroxenite. gabbro-norite.
anorthosile, thin layers of troctolite
and olivine-gabbro

- Agua Clara Suite. Granodiorite and granile
& 1 D Alto Guaporé Complex: G d to tonalic
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o %
7y w [ Ao Jauru Group Gneiss, migmatite and
S o meta-volcanosedimentary rocks
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“-.{:).l .
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/  Fauits and Shear Zones

Fig. 8 — Local geological map (Saes et al. 1984; Nunes 2000; Teixeira et al. 2011).

In 2006, the Brazilian Geological Service (CPRM) undertook the magnetic field airborne
survey “Projeto 1080 — Area 2 Mato Grosso”. This survey covers the region occupied by the Figueira
Branca Suite. The collected magnetic field data revealed a magnetic anomaly coherent with the
Indiavai body outcrops. The magnetic anomaly showed a complex signature (Fig. 9), which is
different from that expected for purely induced magnetic anomalies in the south hemisphere, where
the positive area is to the north and the negative to the south of the centre of the magnetic source. The
magnetization contrast supported a gravity ground survey and the collection of samples for
geophysical and mineralogical analyses over the suite. 50 samples were collected, 15 in the Indiavai
area, of mafic-ultramafic rocks of the Figueira Branca Suite, of granitic suites adjacent to the Figueira

Branca, and of the meta-volcanosedimentary Alto Jauru Group (Fig. 8).
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Fig. 9 — Magnetic anomaly of Indiavai. The black circles indicate the location of the gravity

stations.

4.2. Data

The magnetic field survey used Geometrics G-822A Cesium magnetometers with a resolution
0f 0.001 nT. The sampling interval of 0.1 s resulted in an approximate sample spacing of 7.8 m. The
magnetic noise level is 0.5 nT after the industry standard corrections were applied. The average
International Geomagnetic Reference Field (IGRF) ambient field for this period had inclination -

11.6°, declination 234.9°, and intensity 23749 nT.
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Density measurements were made on the collected samples using the “Archimedes method”.
These measurements were performed with distilled water and a high-precision analytic balance.
Magnetic susceptibility measures were taken using a Kappameter KT-9 magnetic susceptibility meter
(Table 4). Thin sections of the samples from the intrusion and from the host-rock were prepared and

analysed.

Table 4 — Densities and magnetic susceptibilities of the samples from Figueira Branca Suite area.

sumpic [ tivoogy | ST T D T Pt T e o0 | o
INDO1 Granite Agua Clara 2.63 431107 0.010 0.001
INDO02 Gneiss Alto Guaporé 2.96 3.50-107 0.011 0.001
INDO3 Gabbro Figueira Branca 2.96 2.59-10° 0.073 0.005
INDO04 Gabbro Figueira Branca 2.89 2.64-107 0.028 0.002
INDO5 Gabbro Figueira Branca 2.99 2.30-107 0.038 0.003
INDO6 Gabbro Figueira Branca 2.87 3.28:10° 0.024 0.002
INDO7 Diorite Agua Clara 2.91 2.51-107 0.002 0.000
INDO8 Granite Alto Jauru 2.66 1.85:107 0.000 0.000
IND09 Gabbro Figueira Branca 2.92 3.52:10° 0.039 0.003
IND10 Gabbro Figueira Branca 2.93 1.74-10° 0.057 0.004
IND11 Gabbro Figueira Branca 2.76 2.03-107 0.000 0.000
IND12 Granite Agua Clara 2.76 2.57-107 0.001 0.000
IND13 Granite Agua Clara 2.69 1.33-10° 0.031 0.004
TJAO3 Gneiss Alto Jauru 2.89 2.59-107 0.000 0.000
TJA10 Gneiss Alto Jauru 2.82 2.17-107 0.010 0.000

The samples were divided in two groups: one comprising specimens from the Figueira Branca
Suite, and one from the adjacent lithologies that host the suite. The limits of Figueira Branca Suite
have been defined since the 1980’s. Rocks assigned to the suite and to the country rock were based on
field and thin-section analysis. The density and magnetic susceptibility measurements for the samples
collected in the suite domain showed a large variation. The densities varied from 2.63 g/cm’ to 2.99
g/cm’, whereas the magnetic susceptibility ranged from 0 to 0.073 (S.1.). Averages for the density and

magnetic susceptibility of the mafic rock samples were, 2.89 g/em® and 0.027 (S.1.) respectively. The

25



Page 19 of 33

O©CoONOOOAPRWN -

273

274

275

276

277

278

279
280
281
282
283
284
285
286
287
288
289

290

Geophysical Journal International

average values are low for a mafic-ultramafic suite, so thin section analyses were taken to evaluate the

cause.

4.3. Samples and Thin Sections

Despite the apparent freshness of the hand samples, the thin sections showed variable degrees
of alteration and weathering. Seven thin sections of samples collected from the Indiavai body (Fig.
10) revealed plagioclase to be the dominant mineral phase (c.a. 70%), followed by olivine (c.a. 20%)
and pyroxene (c.a. 10%). The samples INDO1, IND08 and IND13 were recognized as granitic rocks
and considered as part of the host-rock. The samples INDO3 and IND10 were the least affected by
weathering or alteration, and maintained higher values of density and magnetic susceptibility. These
two samples were coarse grained, with plagioclase crystals reaching 5 mm and olivine crystals of 2
mm. Samples IND04, INDOS, IND06 and INDO09 showed signs of weathering along fractures of
olivine grains, and more significantly in plagioclase grains in sample IND06, which displayed both
weathering and alteration. The weathering was present on a smaller scale than in INDOS, but it is
possible to observe serpentinization along olivine fractures. IND07 displayed intense weathering, and

it was impossible to identify primary igneous crystals.
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Fig. 10 — Thin sections from the Indiavai body (a) INDO03, (b) IND04, (c) INDOS5, (d) INDO6, (e)
INDO7, (f) IND09 and (g) IND10. p indicates the measured density, whereas k represents the

magnetic susceptibility. The images were produced with cross-polarized light.
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The presence of opaque oxide crystals occurs in a number of samples (e.g., INDO3 and
IND10). D’Agrella-Filho et al. (2012) identified euhedral magnetite crystals (Fig. 11) up to
approximately 0.5 mm in samples from the same outcrop as sample INDO3. The higher content of
opaque crystals in INDO3 and INDIO can be associated with the considerably higher magnetic

susceptibility, when compared with other Indiavai samples.

Fig. 11 — Euhedral magnetite crystal from the Indiavai body (D'Agrella-Filho et al. 2012).

4.4. Potential Fields Modelling

The outcrops of the Indiavai body indicate the body extends to the surface. The complex
magnetic anomaly pattern of the body, likely reflecting different sources, impeded the MaxiMin
method to reduce the field to the pole with minimum negative values (Fig. 12a). The best
approximation was an inclination of 56° and declination of 213° (09s5,=5°, 386 iterations). The

inclination 56° and the declination 213° were used as fixed total magnetization directions during the
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whole staged-inversion. The lateral limits were assessed through horizontal gradient derivatives of the

field reduced to the pole (Fig. 12b).
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Fig. 12 — (a) Reduction to the pole and (b) horizontal derivative gradient of the Indiavai magnetic

anomaly.

Two inversions were performed following the same principles as applied to the synthetic
models. Model R1 (Fig. 14a to c) used only measurements from samples considered fresh on the basis
of the thin section analysis, and kept them fixed during the inversion; the best case scenario. Model
R2 (Fig. 14d to f) used all density and magnetic susceptibility measurements and let them vary during
the inversion, as is generally used in exploration projects. Table 5 shows the characteristics and rms-
errors for the two real-case models. The inversion of the magnetic field happened in the two phases
described in the methodology section, whereas the gravity field inversion occurred only in profiles
(second phase of the staged-inversion) due to the reduced number and restricted spread of gravity

stations.
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1

2

3 328 Table 5 - Inversion results for the model considering all the magnetic susceptibilities and density

4

5 329 measurements, and for the model with the magnetic susceptibilities and densities from samples

6

7 330 considered fresh after the thin sections analyses. k and p represent the magnetic susceptibility and the
8

9 331 density, respectively.

10

11

12 Geophysical Models

13 Background (Host-rock)

14 Average Magnetic Susceptibility 0.007 (S

15 Average Density 2.70 g/cm?®

16 Model R1: Fixed k and p — IND03, IND05, IND09 and IND10

17 Average Magnetic Susceptibility 0.05 (S

18 Average Density 2.94 g/cm?

19 Total Volume 9.35 km?

20 Magnetic and Gravity Fields Inversions

21 Magnetization Induced Total (aese, = 5.0°) Remanent (959, = 8.9°)

22 Inclination (°) | -11.6 56 49.6

” Declination (°) | 346.9 213 199.5

o5 Intensity (A/m) 0.9 3.8 4.4

26 RMS-Mag (%) 4.9 # of Points 29003

27 Average RMS- 8.6 # of Points 60

28 Grav (0/0)

29 Model R1: Free k and p — Samples IND02 to IND07 and IND(9 to IND12

30 Average Magnetic Susceptibility 0.29 (SD

31 Average Density 2.83 g/em?

32 Total Volume 22.23 km?

33 Magnetic and Gravity Fields Inversions

34 Magnetization Induced Total (ays, = 5.0°) Remanent (095, = 13.6°)

35 Inclination (°) -11.6 56 27.7

36 Declination (°) 346.9 213 207.7

37 Intensity (A/m) 4.2 1.4 4.7

38 RMS-Mag (%) | 7.4 # of Points 29003

39 Average RMS- 11.0 # of Points 60

40 Grav (%)

41 332

42

43

44 333 The inversion using magnetic susceptibility and density measurements on samples INDO3,
45

46 334  INDO35, IND09 and IND10 (Model R1) achieved a rms-error of 4.9% in the magnetic case and 8.6%,
47

jg 335  on average for the Bouguer anomaly profiles (Table 5). The maximum absolute residuals were 450 nT
2(1) 336  (Fig. 13ato c¢) and 0.6 mGal (Fig. 14a). The highest residual amplitudes are concentred in two spikes.
gg 337  The modelled body had 10500 m in north-south direction and 4000 m in the east-west. The maximum
gg 338  wvertical extension achieved was 1000 m (Fig. 15). The remanent magnetization obtained for this
g? 339  model had an inclination 49.6°, declination 199.5° and intensity 4.4 A/m (050, = 8.9°).
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Fig. 13 —Model R1 (a) modelled and (b) residual magnetic fields, (c) histogram of residual values.
Model R2 (d) modelled and (e) residual magnetic fields, (f) histogram of residual values. The black
circles indicate the location of the gravity stations and the black lines the profiles used for gravity

modelling.

Model R2 (Fig. 14d to f) used all the available measurements (samples IND02 to IND07 and
INDO9 to IND12), and let them vary during the staged-inversion. The modelled magnetic field had
rms-error of 7.4%, and the average rms-error of 11% in the Bouguer anomaly profiles (Table 5). The
absolute residuals were 631 nT and 0.8 mGal (Fig. 14). The more significant values are distributed
along four regions in the centre and at the north of the magnetic and Bouguer anomaly fields (Figs. 14
and 15). The lateral extension of the modelled body was 10700 m in north-south direction and 4000 m
in the east-west, and it had maximum vertical extension of 2500 m (Fig. 14). The remanent
magnetization obtained in this case was defined by inclination 27.7°, declination 207.7° and intensity
4.7 A/m (aosy, = 13.6°).
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to IND-D, and (f) and (g) present the profile from IND-E to IND-F.
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5. Discussion

Modelling the magnetic and gravity field of the synthetic body using both the same parameters
as the original synthetic body and using inaccurate constraints, and keeping them fixed or allowing
them to vary in the staged inversion, indicated that the rms-error can be reduced to acceptable values
in all cases. However, the shape of the modelled body and the distribution of magnetic susceptibilities
and densities were severely affected. The modelled fields had rms-errors smaller than 4.0%, a good
value considering that it is a synthetic model without noise or interfering anomalies. The apparent
remanent magnetization in all cases differed from the original model by less than 10°, both in

inclination and declination, whereas the intensities have not exceeded more than 2 A/m of difference.

The lateral distribution of the modelled bodies kept the overall shape of the original model.
Model 1 (Fig. 5a and b) had the best distribution as would be expected for a model using all the
correct constraints. Models 2 to 4 (Fig. 5c to h) presented one to two sections more than the original
model, and their depths and depth extents were overestimated during the inversion. Model 2, which
kept fixed the magnetic susceptibility and density, extended to depths almost twice the size of the
original model. Models 3 and 4 (Fig. 5e to h) showed smaller variations in depth, except for the
sections that lay beyond the original model limits, which were displaced to considerably shallower or

deeper depths (Fig. 6).

Models 3 and 4 (Fig. Se to h), in which magnetic susceptibilities and densities were allowed to
vary during the staged inversion, displayed variation in these features along the north-south oriented
sections. Both cases showed much higher properties in two or three sections, whereas the remaining
sections had values next to zero. This behavior was reflected in the residual fields, indicating exactly

the sections with higher proprieties, and what increased the rms-error.

The four synthetic cases showed that inaccurate constraints can interfere with the final result of
the modelling. Unsurprisingly, the best solution for the synthetic gravity and magnetic fields was

achieved by modelling with the right constraints fixed (Model 1, Fig. 5a and b), which resulted in a
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low rms-error (Table 2) and a model with the closest shape, volume and physical properties to the
original body. In real cases, having all the correct constraints is not trivial or even possible in some
situations. The next best result was achieved by modelling with the correct initial constraints and then
allowing the magnetic susceptibility and density to change during the inversion (Model 3). Model 4,
which used inaccurate parameters that were allowed to change during the modelling, had the third
best result on the basis of the model and the rms-errors. The least reliable model used inaccurate

magnetic susceptibility and density values that were keep fixed during the inversion.

The magnetic and gravity anomalies associated with the Indiavai body of the Figueira Branca
Suite were modelled using two of the cases shown with the synthetic models. One case (R1) used only
magnetic susceptibilities and densities from samples selected after mineralogical analyses, and kept
these features fixed during the staged inversion, similarly to Model 1. The second case, Model R2,
used all the measurements available and let magnetic susceptibility and density change during the
staged inversion, like Model 4. The two methodologies were chosen to apply the best case scenario
indicated by the synthetic model inversion, and the most common situation in geophysical

exploration, with limited data available.

The two inversions obtained low rms-errors for real data. Low rms-errors do not necessarily
reflect an adequate and geologically feasible result. Both models were elongated in north-south
direction and presented the same 4000 m extension in east-west direction. The major differences
between the two models were in the vertical extension, the volume, and the distribution of magnetic
susceptibility and density (Table 5 and Fig. 15). The maximum vertical extension of Model R2 was
2.5 times larger than in Model R1. This difference reflected directly in the volume, which showed

similar proportion (2.37 times).

Model R1 kept the magnetic susceptibility and density fixed, but varied the amplitude of total
magnetization, depth and the position of the vertices of the model. This staged-inversion proved to be
more time-consuming, especially on areas where the gravity profiles crossed the magnetic lines and
each other. The results showed a more compact body, and smaller errors than the inversions of Model
R2. The staged-inversion of Model R2 reduced the error considerably faster than in Model RI
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process. Model 2, however, presented a large variation in the depth of the base of the model and in the
magnetic susceptibility and density. These last two features, similarly to the synthetic cases 3 and 4
(Fig. 5e to h), presented the concentration of higher values in some north-south sections, whereas the

remaining sections ended up with values near zero (Fig. 15).

The apparent remanent magnetization obtained in both real data cases were similar to the
paleomagnetic data obtained by D'Agrella-Filho et al. (2012). The natural remanence magnetization
(NRM) for the Indiavai body has inclination 50.7° and declination 209.8° (0.ose, = 8.0°). The apparent
remanent magnetization for Model R1 had inclination 63.0° and declination 187.3° (095,=8.9°), and
for Model R2, inclination 27.7° and declination 207.7° (ttes:,=13.6°). The proximity of the indirectly
estimated apparent magnetic remanence with the calculated NRM is remarkable, considering the

complexity and degree of interference of smaller anomalies over the main Indiavai magnetic anomaly.

6. Conclusions

Measurements of densities and magnetic susceptibilities of samples from the Indiavai body
from the Figueira Branca suite were abnormally low. Modelling potential fields with inaccurate
constraints can produce results significantly different than the actual source of the geophysical

signals.

A synthetic model was composed and used to test four different approaches for the staged-
inversion: two keeping the magnetic susceptibility and density fixed, and two setting them free during
the inversion. Correct and inaccurate properties were used in both cases. The model keeping the
correct properties fixed was the one that best reduced the residuals between observed and modelled
magnetic and gravity fields, and resulted in the shape and volume that best approached the original

model. The other models approximated to the original synthetic model, minimizing the rms-errors and
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quantitatively followed the sequence, from best to worst: correct properties set free (Model 3),

inaccurate properties set free (Model 4), and inaccurate fixed properties (Model2).

Based on the results from the synthetic models, the magnetic and gravity field anomalies
associated with the Indiavai body of the Figueira Branca Suite were modelled. Values of density and
magnetic susceptibilities were averaged from measurements obtained from hand-samples. Some of
the values obtained on these measurements were relatively low for the mafic-ultramafic rocks that
constitute the Figueira Branca Suite and corresponded with thin-section observations indicating

varying degrees of alteration and weathering.

Based on the variation in the condition of the samples, two approaches were used to evaluate
the effects of inaccurate constraints in the modelling of real potential fields. One model (R1) used
measurements made only on fresh samples, indicated by thin-sections, and kept these values fixed
during inversion. The second model (R2) used all the measurements, emulating a case where thin-
section analyses would not be available. Although both inversions presented rms-errors below 13%
for a considerably complex anomaly, Model R1 still had an rms-error of almost half of Model R2. The
shape of R1 was more regular and compact, with a single magnetic susceptibility and density for all
sections. Model R2 had 2.5 times the volume and vertical extension of Model R1. Howeyver, it took
much less time to achieve the rms-error than in Model R1. Distributions of magnetic susceptibility
and density as seen in Model R2 (north-south-oriented sections of fixed physical properties) are
geologically feasible, but less plausible for potential field modelling than assuming a homogeneous

distribution, as in Model R1.

Exploration projects frequently do not have the necessary time to spend on long and complex
modelling procedures, which makes the approach used in Model R2 appealing. Nevertheless, the
magnetic susceptibility and the density evidenced the importance of using correct constraints. The
results obtained in this paper showed that geological observation, thin-sections, and any other direct,

and/or indirect, constraints are valuable assets for a proper and reliable modelling.
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3. Manuscript 2:Tectonic insights of the Southwest Amazon Craton from
geophysical, geochemical and mineralogical data of Figueira Branca Mafic-

Ultramafic Suite, Brazil

Once defined the mineralogy and lithology of the samples, and ultimately, the proper
constraints to be used in a potential field inversion, the following stage was to analyse the
Figueira Branca Suite. This chapter develops geophysical models of the bodies that compose
the suite, investigates the extent of the magmatism that generated it, the geochemical features

of the parental magma and the local tectonic framework by the time of the intrusion.

Magnetic and gravity field data were modelled to evaluate the geometry and an
approximation of the volume of the bodies from the Figueira Branca Suite. Gamma-ray
spectrometry revealed areas where the intrusions outcropped or were very shallow. Major and
trace elements geochemistry identified the samples as gabbros and peridotite-gabbros, whereas
light-Rare-Earth element trends suggest a progressive fractionation of the magma. Trace
element plots, allied with the observed and previously published geology of the region,

indicated a back-arc extension framework in the later stages of the Santa Helena Orogen.
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Tectonic insights of the Southwest Amazon Craton from geophysical,
geochemical and mineralogical data of Figueira Branca Mafic-Ultramafic

Suite, Brazil
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Abstract

The Figueira Branca Suite is a layered mafic-ultramafic complex in the Jauru Terrane,
southwest Amazon Craton. New lithological, geochemical, gamma-ray and potential field
data, integrated with geological, isotope and paleomagnetic data are used to characterize this
pulse of Mesoproterozoic extension-related magmatism. The Figueira Branca Suite formed
through juvenile magma emplacement into the crust at 1425 Ma, coeval with the later stages
of the Santa Helena Orogen. Gabbros and peridotite-gabbros display increasing enrichment of
LREE, interpreted as evidence of progressive fractionation of the magma. Magnetic and
gamma-ray data delimit the extent of magmatism within the suite to four bodies to the north
of Indiavai city. Modelling gravity and magnetic field data indicate that the anomalous
sources are close to the surface or outcropping. These intrusions trend northwest over 8 km,
with significant remanent magnetization that is consistent with published direction obtained
through paleomagnetic data. The emplacement, mineralogy and geochemical signature point
towards a back-arc extension tectonic framework in the later stages of the Santa Helena

Orogen.
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Abstract

The Figueira Branca Suite is a layered mafic-ultramafic complex in the Jauru Terrane,
southwest Amazon Craton. New lithological, geochemical, gamma-ray and potential field
data, integrated with geological, isotope and paleomagnetic data are used to characterize this
pulse of Mesoproterozoic extension-related magmatism. The Figueira Branca Suite formed
through juvenile magma emplacement into the crust at 1425 Ma, coeval with the later stages
of the Santa Helena Orogen. Gabbros and peridotite-gabbros display increasing enrichment of
LREE, interpreted as evidence of progressive fractionation of the magma. Magnetic and
gamma-ray data delimit the extent of magmatism within the suite to four bodies to the north
of Indiavai city. Modelling gravity and magnetic field data indicate that the anomalous
sources are close to the surface or outcropping. These intrusions trend northwest over 8 km,
with significant remanent magnetization that is consistent with published direction obtained
through paleomagnetic data. The emplacement, mineralogy and geochemical signature point
towards a back-arc extension tectonic framework in the later stages of the Santa Helena

Orogen.
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1. Introduction

The Amazon Craton is divisible into six geochronological provinces: Central Amazon,
including the stable Archean nuclei of the craton, and the Proterozoic provinces of Maroni-
[tacaiunas, Ventuari-Tapajos, Rio Negro-Juruena, Rondonian-San Ignacio and Sunsas-
Aguapei (Fig. la) (Tassinari and Macambira, 1999; Teixeira et al., 2010). The southern
portion of the Rio Negro-Juruena (1.78 — 1.55 Ga) province includes the Jauru Terrane (1.78
— 1.40 Ga), which contains Paleoproterozoic basement rocks and the Mesoproterozoic
Cachoeirinha and Santa Helena orogens (Fig. 1b) (Bettencourt et al., 2010). The Alto Jauru
Group, part of the Paleoproterozoic basement, hosts the Figueira Branca Mafic-Ultramafic

Suite, the focus of this paper.

The Figueira Branca Suite occurs in the southwest of the Mato Grosso State, Brazil, and to
the southwest of the Parecis Basin (Fig. 1b). Our aim is to integrate new lithological,
geochemical, gamma-ray and potential field data with available geological, isotope and
paleomagnetic data to characterize the Figueira Branca Suite and delimit the extent of this

Mesoproterozoic magmatic pulse.
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Ignacio provinces of the Amazon Craton. The Figueira Branca Suite is represented in dark blue. The
black boxes indicate the bodies near the city of Indiavai (I) and Cachoeirinha (C) (Bettencourt et al.,

2010), and the Morro do Leme and Morro do Sem-Boné mafic-ultramafic suites (M).

2. Geologic and Tectonic Framework

Cordani et al. (2010) use regional geochronological and tectonic patterns to propose that the
development of the southwest Amazon Craton occurred within a series of accretionary
orogens. This regime was responsible for the production of numerous magmatic arcs and
related magmatism until the late Mesoproterozoic (Teixeira et al., 2016). The Alto Jauru
Group and the Alto Guaporé Metamorphic Complex (Fig. 1b) compose the Jauru Terrane,
Rio Negro-Juruena Province (Matos et al., 2009; Souza et al., 2009). The Alto Jauru Group
(1760 to 1720 Ma) (Monteiro et al., 1986; (Bettencourt et al., 2010) comprises gneiss,
migmatites and three meta-volcanosedimentary sequences: Cabacal, Araputanga and Jauru.
The Alto Guaporé Metamorphic Complex (1790 to 1740 Ma) (Menezes, 1993) is
characterized by granodioritic to tonalitic orthogneiss intruded into supracrustal
volcanosedimentary sequences, with all metamorphosed to greenschist or amphibolite facies

(Bettencourt et al., 2010).

During the evolution of the Rondonian-San Ignacio Province, the Jauru Terrane underwent
compressional deformation related to ocean closure, marked by the Guaporé suture and
collision of the Paragua terrane (Rizzotto et al., 2013) (Fig. 01). Subduction associated with
ocean closure resulted in magmatic activity preserved in the Cachoeirinha (1587 to 1522 Ma)
and Santa Helena (1485 to 1425 Ma) orogens (Geraldes et al., 2001) and was intruded into
the Alto Jauru Group.

The Cachoeirinha orogen consists of the Alvorada (1.53 to 1.44 Ga) and Santa Cruz (1.56 to
1.52 Ga) intrusive suites. These suites are represented by granite, tonalite, granodiorite and
gneissic migmatite (Geraldes et al., 2001), and show an Andean-type arc signature with end)
values varying from -1.3 to +2.0 and Tpy ages of 1.9 to 1.7 Ga (Bettencourt et al., 2010;
Geraldes et al., 2001). The Santa Helena orogen comprises the Santa Helena (1.44 to 1.42
Ga), the Pindaituba (1.46 to 1.42 Ga) and the Agua Clara (1.44 to 1.42 Ga) intrusive suites

(Ruiz, 2005). The intrusive suites of the Santa Helena Orogen consist of monzonites,
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granodiorites and tonalites in an oceanic-continental arc setting evidenced by endw values

varying from +1.0 to +4.0 and Tpy ages of 1.8 to 1.5 Ga (Geraldes et al., 2001; Ruiz, 2005).

The Figueira Branca Suite is a layered mafic-ultramafic complex composed from bottom to
top of dunite, pyroxenite, gabbro-norite, anorthosite, thin layers of troctolite, and olivine-
gabbro (Teixeira et al., 2011). The Indiavai gabbro from the suite yielded a U-Pb SHRIMP
zircon age of 1425 = 8 Ma (Fig. 1b, box 1), and a second intrusion near Cachoeirinha city
(Fig. 1b, box C) was dated at 1541 + 23 Ma (Teixeira et al., 2011). Ar-Ar dating of biotites
yielded plateau ages of 1275 + 4 Ma and 1268 + 4 Ma for the Indiavai gabbro, which were
evaluated as minimum ages for regional cooling. end(1 42 Ga) values vary from +3.0 to +4.7, and
€sr(1.42 Ga) values from -39.1 to -8.1 indicating a predominantly juvenile source (Fig. 2). The
crystallization age of the Indiavai gabbro is coeval with the later stages of evolution of the

Santa Helena Orogen (Fig. 1b) (Tassinari et al., 2000).
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Fig. 2 - end(1.42 Ma) vs. es(1.42 Ga) diagram of the Figueira Branca Suite (Teixeira et al., 2011).

Our study is focused on the geological, geophysical, isotope and geochemical character of
four northwest aligned intrusions of the Figueira Branca Suite between the towns of Indiavai
and Lucialva (Fig. 3). This data set provided a basis for evaluating other bodies with similar
features usually associated with this suite (Fig. 1). By associating different bodies of similar
geophysical signature with the Figueira Branca Suite, we were able to estimate the extent of
the magmatism that generated the suite during the Mesoproterozoic and its role for the

tectonic framework of the area.
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Fig. 3 — Local geological map (Nunes, 2000a; Saes et al., 1984; Teixeira et al., 2011).

Bettencourt et al. (2010) suggested rocks of the Figueira Branca Suite mafic-ultramafic suite
extend north of the Santa Helena batholith. In more detailed studies, Ruiz (2005), Corréa da
Costa et al. (2009) and Girardi et al. (2012) associate the mafic-ultramafic plutons to the
north of the Santa Helena batholith to the Cérrego Dourado Suite (Fig. 1). This suite is made
of foliated metagabbro, metatroctolite, tremolite, pyroxenite and serpentinite (Corréa da
Costa et al., 2009; Ruiz, 2005). Although there is no direct dating of the Corrego Dourado
Suite, Ruiz (2005) associate the rock type and deformation of this suite to the 1439 + 4 Ma
Salto do Céu gabbroic sill (Teixeira et al., 2016).

Northwest of the Jauru Terrane, a set of mafic-ultramafic intrusions crops out in the Alto
Guaporé Metamorphic Complex. (Nunes, 2000b) associated these bodies, the Morro do Leme
and the Morro do Sem-Boné suites, to the Cacoal Suite (not mapped in Fig. 01, more
outcrops are found to the north of Fig. 1). These suites are basic-ultrabasic intrusions, made
up of dunites and peridotites of 1349 = 14 Ma (Rb-Sr, whole rock) (Quadros and Rizzotto,
2007).
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3. Data

In 2006, the Brazilian Geological Service undertook a gamma-ray and magnetic field
airborne survey named “Projeto 1080 — Area 2 Mato Grosso” that covers the region occupied
by the Figueira Branca Suite. The nominal terrain clearance was 100 m at an airspeed of
approximately 280 Km/h. The north-south line spacing was 500 m, whereas the east-west tie
lines were spaced at 10000 m. The airborne survey was processed by LASA Prospec¢des S/A

and Prospectors Aerolevantamentos e Sistemas LTDA.

The gamma-ray data were measured with an Exploranium GR-820 Spectrometer of 256
channels. This spectrometer uses 5 sets of Nal (Tl) crystals, three of them downward-
oriented, and two upward. The downward-oriented sets are composed by two sets crystal of
16.8 L and one set of 8.4 L. The two upward-oriented sets contain 4.2 L crystals. The

sampling interval was 1 s, resulting in an observation spacing of approximately 78 m.

The acquisition of the magnetic field data used Geometrics G-822A Cesium magnetometers
of resolution of 0.001 nT. The sampling interval of 0.1 s resulted in an approximate sample
spacing of 7.8 m. The magnetic noise level is 0.5 nT after the industry standard corrections
were applied. The average International Geomagnetic Reference Field (IGRF) ambient field

for this period, which had an inclination -11.6°, declination 234.9°, and intensity 23749 nT.

195 ground gravity stations were installed in the region where the suite is emplaced. 50
samples of different rock types were collected for petrophysical and geochemical
measurements. Density data were collected by the “Archimedes method” with distilled water
and a high-precision analytic balance, whereas magnetic susceptibility measures were taken
using a Kappameter KT-9 magnetic susceptibility meter. Thin sections were prepared and
analysed to select samples for geochemical measurements and for constraining the
geophysical models. 30 samples were selected for whole-rock major elements analyses
through XRF, from which 20 were designed for trace and rare-earth elements analyses by
ICP-MS, containing specimens of the Figueira Branca Suite, Alto Jauru Group and adjacent

granitic suites.

The selected samples were powdered and homogenized as bulk material. The XRF analyses
were made in a Philips PW2400 XRF instrument at the Geoanalitica laboratory of the
Instituto de Geociéncias of the Universidade de Sdo Paulo, Brazil. The trace and REE

analyses were made at the Laboratério de Geoquimica Analitica of the Universidade Estadual
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de Campinas, Brazil. The samples were digested in Parr-type bombs with HF and HNO3 mix.
All solutions were prepared with ultra-pure water through the Milli-Q system. The HNO3 was
purified by sub-ebulition. The containers used on the dilutions were previously cleaned with
HNO3 (5%) and washed with ultra-pure water. The trace elements measurements used an
ICP-MS XserieslI (Thermo) equipped with CCT (Collision Cell Technology). The calibration
of the equipment was made using multielementary solutions gravity-prepared by
monoelementary standard solutions of 100 mg/LL (AccuStandards). The detection limit (DL =
x + 30) was determined as the average (x) plus three standard deviations (o) of ten
measurements of the laboratory blanks and the instrument background. The quality control
used the reference materials BRP-1 (basalt) and GS-N (granite) from the Laboratério de
Geoquimica Analitica. The results and their respective uncertainties for the eleven samples

from the Figueira Branca Suite rocks are available in Table 1.

Table 1 — XRF and ICP-MS results for the Figueira Branca Suite.

XRF Results (%)

Sample | INDO3 | INDO6 | INDO9 | IND10 | AZT05 | AZT10 | FIGO1 | FIGO2 | FIGO3 | JAUO1 | JAUO2 | DL | Error (%)

SiO2 | 47.09 | 46.96 | 47.79 | 47.04 | 50.97 | 48.39 | 48.89 | 39.64 | 40.74 | 49.48 | 50.18 | 0.03 0.48

TiO2 | 0.41 0.35 026 | 0.28 0.57 0.42 022 | 006 | 0.08 | 0.28 0.55 |0.003 | 0.009

Al203 | 2048 | 2395 | 21.72 | 20.7 | 1837 | 18.1 6.15 | 939 | 18.13 | 21.18 | 17.62 | 0.02 0.09

Fe203 | 989 | 652 | 8.04 | 9.08 8.25 8.45 9.31 113 | 6.64 7.7 9.36 | 0.01 0.09

MnO | 0.14 | 0.09 | 0.11 0.12 0.14 0.13 0.17 | 0.15 | 0.09 0.1 0.14 10.002 | 0.003

MgO | 9.01 7.09 879 | 9.83 7.27 5.67 | 22.96 | 2697 | 16.26 | 7.66 | 10.56 | 0.01 0.06

CaO | 10.27 | 1235 | 11.02 | 10.3 9.43 10.5 7.89 | 4.92 9.4 10.02 | 8.73 | 0.01 0.02

Na20 | 2.38 | 2.13 246 | 2.36 2.75 222 032 | 0.33 1.13 | 2.76 237 | 0.02 0.12

K20 0.12 | 0.11 0.11 0.12 0.38 0.81 0.21 0.03 | 0.03 0.19 0.24 | 0.01 0.01

P205 | 0.03 0.03 0.01 0.02 0.04 0.02 0.12 | 0.01 | 0.01 0.01 0.11 ]0.003| 0.003

LOI | <0.01 | 0.86 0.1 0.16 1.48 5.72 528 | 798 | 698 | 0.16 0.2 | 0.01 ---

Total | 99.81 |100.44|100.41 [ 100.02 | 99.65 | 100.43 | 101.52|100.78 | 99.49 | 99.54 | 100.06 | --- -

ICP-MS Results (mg.g™)

Sample | INDO3 [ INDO6 | INDO9 | IND10 | AZTO05 | AZT10 | FIGO1 | FIGO2 | FIGO3 | JAUOI | JAUO2 | DL | Error (%)

Cu 89.1 - 325 - 743 353 4.89 | 320 | 129 | 46.6 42.6 3 0.2
Nb 0.52 --- 0.37 --- 1.53 0.75 0.61 032 | 1.33 | 020 1.38 | 09 0.05
Rb 431 --- 3.58 --- 114 13.8 093 | 094 | 0.81 3.55 3.41 1 0.2
Sr 238 --- 236 --- 218 218 178 137 225 522 458 6 0.07
Zn 559 - 46.1 - 59.2 45.9 587 | 63.1 | 414 | 523 71.5 2 3.4
Zr 17.4 - 13.4 - 42.8 22.6 130 | 330 | 5.13 | 4.74 329 5 0.04
Cr 17.2 --- 3255 --- 390 103 1703 136 | 1184 137 609 1 0.4
Ba 41.7 --- 39.0 --- 85.5 71.6 847 | 249 | 28.0 112 154 7 0.08
Ni 202 - 160 - 40.7 49.6 1054 | 1112 | 720 168 175 0.9 0.2
Be 0.15 - 0.09 - 0.35 0.23 039 | 0.06 [ 0.04 | 0.16 032 | 0.1 0.04
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194
195

196
197
198
199
200
201

\% 100 --- 65.6 --- 139 134 110 19.8 | 269 | 69.7 112 7 0.1

Co 56.8 - 529 --- 40.3 393 82.9 125 70.7 | 50.7 54.1 1.4 0.02
Ga 16.3 - 15.9 - 19.0 17.1 565 | 599 | 106 16.3 15.3 0.6 0.009
Y 8.87 - 6.19 - 14.7 10.6 5.43 1.56 | 1.77 | 3.12 8.85 1 0.02
Mo 0.10 --- 0.08 --- 0.28 0.14 0.13 | 0.08 | 0.08 [ 0.06 0.15 | 0.1 0.02
Sn 0.14 --- 0.06 --- 0.32 0.19 0.06 | <DL | <DL | <DL | 0.14 | 0.4 0.08
Sb 0.03 - 0.02 - 0.14 0.10 0.39 | 0.01 | 0.01 0.01 0.01 | 0.01 0.01

Cs 0.06 - 0.05 - 0.83 0.40 0.02 | 0.14 | 0.15 | 0.11 0.19 | 0.02 [ 0.004
Hf 0.53 --- 0.42 --- 1.20 0.69 035 | 0.09 | 0.13 | 0.16 0.81 0.2 0.005
Ta 0.05 --- 0.09 --- 0.12 0.05 0.05 | 0.09 | 0.40 | 0.03 0.08 | 0.08 | 0.003
Pb 0.57 - 0.51 - 1.78 1.47 1.09 | 028 | 0.25 | 0.67 1.04 | 03 0.05
Bi 0.03 - 0.03 - 0.04 0.08 0.06 | 0.02 | 0.02 | 0.02 0.02 0.006
Th 0.28 --- 0.22 --- 0.85 0.33 0.46 | 0.14 | 0.05 | 0.05 0.14 | 0.1 0.003
U 0.08 - 0.05 - 0.39 0.12 033 | 0.19 | 0.06 | 0.01 0.08 | 0.03 0.03
La 1.82 - 1.47 - 5.31 2.70 4.02 | 096 | 0.90 1.57 5.08 1 0.01

Ce 4.13 - 3.28 - 11.5 6.16 8.37 1.75 1.99 | 3.02 11.7 1.2 0.02
Pr 0.60 --- 0.46 --- 1.51 0.87 1.15 | 024 | 027 | 037 1.60 | 0.2 0.006
Nd 2.95 --- 2.20 --- 6.77 3.97 485 | 093 1.10 1.66 6.98 | 0.9 0.009
Sm 0.98 --- 0.69 --- 1.78 1.17 1.08 | 021 | 0.27 | 045 1.61 0.2 0.007
Eu 0.49 - 0.46 - 0.63 0.60 028 | 0.14 | 0.19 | 0.47 0.71 | 0.08 | 0.003
Gd 1.13 --- 0.80 --- 1.96 1.36 1.03 | 021 | 027 | 0.44 1.57 | 03 0.006
Tb 0.22 - 0.16 - 0.36 0.26 0.16 | 0.03 | 0.05 | 0.07 0.26 | 0.05 | 0.003
Dy 1.57 - 1.10 - 2.56 1.88 098 | 026 | 031 0.53 1.61 0.3 0.003
Ho 0.36 --- 0.24 --- 0.54 0.40 020 | 0.05 | 0.07 | 0.11 0.34 | 0.06 | 0.003
Er 0.96 --- 0.67 --- 1.56 1.17 053 | 0.14 | 0.18 | 031 094 | 0.1 0.004
Tm 0.14 - 0.10 - 0.22 0.17 0.08 | 0.02 | 0.03 | 0.05 0.13 | 0.02 0.02
Yb 0.91 - 0.60 - 1.44 1.05 0.51 0.17 | 0.18 | 0.34 0.86 | 0.09 [ 0.005
Lu 0.14 --- 0.10 --- 0.22 0.17 0.08 | 0.03 | 0.03 | 0.05 0.14 | 0.02 | 0.002
Sc 14.7 --- 13.5 --- 272 29.2 21.3 595 | 474 12.2 203 0.8 1.4

Li 4.20 - 7.44 - 8.97 5.31 139 | 3.72 | 268 | 5.68 576 | 03 0.03
Cd 0.07 - 0.05 - 0.09 0.07 0.05 | 0.01 | 0.01 0.07 0.07 | 0.1 0.02

4. Results & Discussion

4.1. Typical Magnetic Field Signature and Bodies Associated with the Suite

Initial data analysis used magnetic field method and the gamma-ray spectrometry to establish
the geophysical signature of the Figueira Branca Suite and delineate analogue anomalies
within the Jauru Terrane. The “Projeto 1080 — Area 2 Mato Grosso” provided a regional data

set of magnetization contrasts and gamma-ray emissions (Fig. 4). The four recognized bodies
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of the Figueira Branca Suite display significant contrasts of magnetization with their
respective host-rocks, generating magnetic anomalies in the total magnetic field map (Fig.
4a). The intrusions were named, from the south to north, Indiavai, Azteca, Figueira Branca
and Jauru. These anomalies show a specific pattern with negative values to the north and
positive to the south, indicating the presence of a significant remanent magnetization in their
sources. The gamma-ray emission for the areas of the four bodies indicated discrete low
counts (dark to black areas in Fig. 4b), typically associated with mafic rocks (Dickson and
Scott, 1997). The Indiavai and Azteca bodies show the general low counts pattern, but have
higher concentrations of eTh and eU than their northern counterparts. The higher

concentration of both elements produces a cyan coloration in the area of the bodies.

A group of small occurrences associated to the Figueira Branca Suite is found to the east of
the Figueira Branca anomaly and to the north of Azteca (Fig. 4a). This anomaly shows a low
trend of gamma-ray counts (Fig. 4b) as expected for mafic rocks, however the magnetic

signature differs grandly from the other anomalies linked with the suite.
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Fig. 4 - (a) Total magnetic field of the area of the Figueira Branca Suite, including the location of the

samples associated to the intrusive suite. (b) Gamma-ray emission of the area.
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The magnetic field and gamma-ray emissions were used as proxies to investigate for
additional mapped and unmapped intrusions related with the Figueira Branca Suite. To use
the magnetic field as a proxy, we applied the Reduction to the Magnetic Pole (RTP) operator
to estimate the direction of total magnetization of the anomalies. A successful RTP filtering
results in a magnetic field where the anomalies present positive contrasts centred over the
limits of the bodies, as the negative values on the map are close to zero. The RTP filtering
requires knowledge of the direction of total magnetization of the field. Hence, it is
recommended to use of this filtering in areas with magnetic anomalies predominantly
generated by the induced magnetization, where its direction is known by the geomagnetic
field in the area during the survey. Fedi et al. (1994) and Cordani and Shukowsky (2009)
proposed and implemented, respectively, a technique called MaxiMin, which does an
inversion of the inclination and declination to estimate the values that better minimize the
negative values of the field and maximize the positive values. The MaxiMin optimal results
were inclination of 56° and declination of 213°, with an a95° of 5° after 386 iterations. Figure
5a shows the RTP field of the Jauru Terrane with the targets found with the analogue
characteristics of gamma-ray emission and/or magnetization. In order to define the lateral
limits of the bodies and evaluate qualitatively the MaxiMin results, we used the 3-D

Amplitude of the Analytic Signal (Fig. 5b and d) (Roest et al., 1992).
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Fig. 5 — (a) RTP of the Jauru Terrane identifying bodies with similar features as those already

recognized as part of the Figueira Branca Suite. (b) and (c) are the Amplitude of the Analytic Signal

and the RTP, respectively, of the anomalies in the northwest of the Jauru Terrane, while (d) and (e)

are the same maps, respectively, for the Figueira Branca Suite.

In the northwest of the Jauru Terrane, a set of other gamma-ray and/or magnetic anomalies

presented similar geophysical signature inside the Jauru Terrane. The only two anomalies in

the northwest that were properly reduced to the pole were spatially associated with the Morro

do Leme and the Morro do Sem-Boné complexes (Fig. 1, 5b and c). These intrusive

complexes are associated to Cacoal basic-ultrabasic intrusive suite and hosted by the Alto

Guaporé Belt (Nunes, 2000b). The RTP of both complexes present similar shapes, indicating

analogue direction of total magnetization. Louro et al. (2014) suggest a remanent

magnetization with inclination of 41.8° and declination of 193° for the Morro do Leme.

Therefore, in the absence of analogue geophysical signatures unrelated with known suites in

the Jauru Terrane, we focused on characterizing the Figueira Branca Suite using the only the

four recognized bodies that maintained the same signature on different and independent

geological and geophysical data.
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4.2. Gravity Field

The gravity field of the region showed three of the four gravity anomalies (Fig. 6). The
Figueira Branca anomaly could not be properly surveyed due to flooding over the northern
part of the body due to construction of a dam. The irregular distribution of gravity stations
allied with a regional trend of the gravity field requiring regional-residual separation. We
isolated the gravity anomaly signatures using a high-pass filter to remove wavelengths larger
than 24400 Km. The cut-off wavelength was defined based on the first inclination change of
the energy spectrum. The anomalies showed good spatial correlation with the magnetic field
data and their maximum amplitudes varied from 1.6 (in the Figueira Branca magnetic

anomaly area) to 7.6 mGal.
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Fig. 6 — Residual Bouguer anomaly map of the Figueira Branca Suite. The black circles represent the

location of the gravity stations.
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4.3. Mineralogy and Geochemical Signature

Mineralogy of the Indiavai, Azteca and Jauru bodies is dominated by plagioclase (ca. 60% to
70%) with fractured and serpentinized olivine (ca. 20% to 25%) and intergrown pyroxene
(ca. 10% to 15%) (Fig. 7a, 7b and 7¢). The Figueira Branca intrusion shows variable grain
size with parts relatively fined grained and displaying significant serpentinization and
weathering (Fig. 7d), whereas other sections are coarse grained and contain a higher
proportion of olivine (ca. 60% olivine and ca. 40% plagioclase; Fig 7e and 7f). Opaque oxide
minerals are present in all thin sections. D'Agrella-Filho et al. (2012) determined the opaque

oxide phase as magnetite in the Indiavai gabbro.

2 3 .;'3 _
&

Scale:

1000 um

Fig. 7 — Thin sections of the samples (a) IND09, (b) AZTO0S, (¢) JAUOI, (d) FIGO01, (e) FIG02 and (f)
FIGO03. The crystals are indicated by their abbreviations: ol — olivine, plag — plagioclase, px —

pyroxene, and serp — serpentine. All photos were taken with cross-polarized light.

Geochemical data were collected on 11 samples (Table 1). On a TAS (SiO2 vs. NaO2 + K20)
plot (Fig. 8a) (Middlemost, 1994), these samples were located inside the gabbro field, with
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the exception of two out of three olivine-rich samples from the Figueira Branca intrusion
(FIGO1 and FIG02) that showed significantly lower values of SiO2 and Na20O+K20 and were
located in the peridotite-gabbro field (Fig. 8a).

The REE normalized to chondrites (Mcdonough and Sun, 1995) shows the increase in the
slopes among the intrusions, from lower to higher: Indiavai, Figueira Branca, Azteca and
Jauru (Fig. 8b). The increase in the slopes indicate the evolution of the magma of the Figueira
Branca Suite, with the Jauru body representing the most, and the Indiavai intrusion the least,
evolved. The majority of the samples display Eu anomalies consistent with the presence of

plagioclase (Fig. 7).
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According with Zheng (2012), Pb and Sr positive anomalies on a Primitive Mantle
normalized spidergram (Sun and McDonough, 1989) are associated to metasomatism in
subduction zones before the melting of the parental magma (Fig 8c). Two types of
metasomatized media are possible in these zones: a media characterized by slab-derived
fluids and one by hydrous melt. The first has high capacity to transport water-soluble
elements, but not water-insoluble. Hydrous melts, however, can transport both water-soluble
and insoluble elements. Rb/Y, Nb/Y, Nb/Zr and Th/Zr ratios can be used as proxies to
suggest the type of metasomatized media (Kepezhinskas et al., 1997). The mafic samples of
the Figueira Branca Suite indicated high values of Rb/Y and Th/Zr, and lower values of Nb/Y
and Nb/Zr (Fig. 9a and 9b), indicating a hydrous melt predominance in the parental magma.
The samples of the Figueira Branca intrusion showed significantly different Th/Zr and Nb/Zr
ratios than the remaining samples from the suite. This behaviour follows the contrast

observed on the mineralogy (Fig. 7¢) and REE slopes (Fig. 8b) of these samples.
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Fig. 9 — Petrogenetic diagrams (a) Nb/Zr vs. Th/Zr, and (b) Rb/Y vs. Nb/Y (Kepezhinskas et al.,
1997), and tectonic discriminant (¢) V vs. Ti/1000 (Shervais, 1982), and (d) ternary Ti/50 vs. Sm*50
vs. V (Vermeesch, 2006) of the Figueira Branca Suite.

Pronounced Zr and Hf negative anomalies for the Figueira Branca Suite samples (Fig.
8c) is indicative of a supra-subduction setting (Wang et al., 2013) and consistent with the
Rb/Y, Nb/Y, Nb/Zr and Th/Zr ratios (Fig. 9a and b). The samples show Ti/V ratios
(10>Ti/V>30) (Fig. 9c) related with MORB and Back-Arc Basin Basalts (BABB) (Shervais,
1982), whereas in the ternary Ti-Sm-V diagram (Vermeesch, 2006) (Fig. 9d), they fall in the
transitional field between MORB and IAB. Vermeesch (2006) explains that the multiplying
factors in the Ti-V and Ti-Sm-V diagrams are used because geochemical data is expressed as
parts of a whole, so the concentration of some elements are not entirely independent to vary

without interfering in the concentration of others in the same system.

The Figueira Branca Suite lies to the east of the Santa Helena orogen and to the west of

the Agua Clara orogen (Fig. 1), two structures originated by the subduction of oceanic crust
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to the west of the Santa Helena orogen. These features, along with the eng(1.42 Ma) vs.
esi(1.42 Ga) signature (Fig. 3), suggest that the Figueira Branca parental magma, originally
depleted, metasomatized during and/or after the subduction of the same ocean crust that
resulted in the Santa Helena and Agua Clara orogens. Furthermore, the location of the suite
between orogens and the parallel alignment of the geophysical anomalies with the extinct
subduction zone, in an extensive environment (Teixeira et al., 2011), suggests a tectonic

framework of back-arc magmatism.

4.4. Magnetic and Gravity Modelling

Density and magnetic susceptibility were measured on samples of the Figueira Branca Suite
and adjacent rocks (Table 2). These values, along with the total field direction estimated by
the MaxiMin technique (inclination 56° and declination of 213°), were used as constraints to
develop magnetic and gravity models for the four anomalies of the Figueira Branca Suite. We
adapted the methodology of staged inversion of Foss (2006) for the available dataset. First,
we created outcropping block models with lateral limits based on the amplitude of the
analytic signal over the magnetic field data. To each of these models were attributed the total
magnetization direction, the average magnetic susceptibility and density (Table 2). The
ambient magnetic field was defined by the IGRF by the time of the survey (inclination -11.6°,
declination 234.9°, and intensity 23749 nT). The significantly smaller number and mostly
irregularly distributed gravity data, was modelled as a secondary parameter which we
allowed larger root mean square (RMS) errors (less than 20%) than to the magnetic field (less

than 10%).

Table 2 - Measured average density and magnetic susceptibility of the four bodies of the Figueira

Branca Suite.

Body Average Density Average Magnetic
(g/cm?) Susceptibility (SI)
Indiavai 2.93888 +0.0001 0.043 £ 0.003
Azteca 2.91945 £ 0.0001 0.065 = 0.004
Figueira Branca 2.84133 £0.0001 0.054 £ 0.004
Jauru 3.02962 + 0.0001 0.066 = 0.005
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The staged inversion varied the following parameters at each stage: (1) the amplitude of the
total magnetization, and depth extent of the block model; (2) the amplitude of the total
magnetization, depth extent and horizontal position; (3) the amplitude of the total
magnetization, depth extent, horizontal position and vertices movements in north-south
direction; (4) the parameters of the previous stage plus the vertices movements in east-west
direction; and (5) all the previous parameters plus the magnetic susceptibility. By the end of
the first staged inversion, the body was subdivided in 500 m north-south oriented polygonal
prisms centred over the surveyed flight lines and the process was reinitiated to optimize the
results, with two differences: instead varying the depth extent in all stages, the vertices were
allowed to vary their positions on vertical direction, and the stage (4) was skipped. The third
and last pass of inversion permitted the variation of the density of the models, with the
modelling based on profiles of the Bouguer anomalies of the Figueira Branca Suite bodies

(Figs. 10 and 11).

The models achieved low RMS errors both for the magnetic and gravity data (Table 2). The
maps comparing the observed, modelled and residual fields are shown in Figure 10. The
modelled Azteca magnetic anomaly (Fig. 10b) showed higher amplitudes in the south of the
map unrelated to any model. We attributed the higher amplitude to border effects due to
interpolation of the modelled data. The observed Bouguer anomaly profiles are compared
with the modelled profiles in figure 11. The residual fields presented low amplitudes when
compared with the amplitude of the anomalies in the observed fields (see the RMS in Table
3). Although the average magnetic susceptibility and average density were used as constraints
for the modelling, we allowed their variation during the last stages of the inversion due the
small number of fresh samples available. The measured and the modelled values remained
the same after the inversion (Tables 2 and 3). The modelled amplitude of the total
magnetization varied from 2.8 to 8.6 A/m? These amplitudes, attributed to their respective
directions obtained through the MaxiMin RTP, enabled the determination of the total
magnetization vectors for the sources of the anomalies. The measured and modelled magnetic
susceptibilities, with the characteristics of the ambient field given by the IGRF, permitted the
estimation of the induced magnetization vectors on the Figueira Branca Suite modelled
bodies. Subtracting the total by the induced magnetization vector of each model, we
estimated their remanent magnetization vectors. The calculated remanent magnetization for

the four anomalies were quite similar as seen in Table 2. Their directions approximate the
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398  average remanent magnetization direction of the Indiavai gabbro reported by D'Agrella-Filho

399  etal. (2012) with inclination 50.7°, declination 209.8°, and a95° 8.0.

400
401 Table 3 - Features and RMS values of the models of the Figueira Branca Suite.
Geophysical Models
Alto Jauru Group (Host-rock)
Samples
Avg. Mag. Suscep. 0.007 (SI)
Avg. Density 2.70 g/cm? # of Samples 36
Indiavai
Samples
Avg. Mag. Suscep. 0.05 (SI)
Avg. Density 2.94 g/cm? # of Samples 6
Magnetic and Gravity Fields Inversions
Magnetization Induced Total Remanent
Inclination (°) -11.6 56 49.6
Declination (°) 346.9 213 199.5
Intensity (A/m) 0.9 3.8 4.4
RMS-Mag (%) 5.8 # of Points 29003
RMS-Grav (%) 18.9 # of Points 89
Azteca
Samples
Avg. Mag. Suscep. 0.07 (8D # of Samples: 2
Avg. Density 291 g/em?
Magnetic and Gravity Fields Inversions
Magnetization Induced Total Remanent
Inclination (°) -11.6 56 51.2
Declination (°) 346.9 213 191.8
Intensity (A/m) 1.3 8.6 9.5
RMS-Mag (%) 6.4 # of Points 9251
RMS-Grav (%) 12.1 # of Points 37
Figueira Branca
Samples
Avg. Mag. Suscep. 0.06 (SD
Avg. Density 2.84 g/cm? # of Samples: 3
Magnetic and Gravity Fields Inversions
Magnetization Induced Total Remanent
Inclination (°) -11.6 56 45.9
Declination (°) 346.9 213 194
Intensity (A/m) 1.1 2.8 3.6
RMS-Mag (%) 3.7 # of Points 19206
RMS-Grav (%) 10.8 # of Points 17
Jauru
Samples
Avg. Mag. Suscep. 0.07 (8D .
Avg. Density 3.02 g/em® # of Samples: 3
Magnetic and Gravity Fields Inversions
Magnetization Induced Total Remanent
Inclination (°) -11.6 56 51.6
Declination (°) 346.9 213 202.9
Intensity (A/m) 1.3 7.8 8.6
RMS-Mag (%) 33 # of Points 9893
RMS-Grav (%) 13.8 # of Points 28
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Fig. 10 — Original, modelled and residual magnetic fields of the bodies of Figueira Branca Suite: (a)

Indiavai, (b) Azteca, (c) Figueira Branca, and (d) Jauru. The black circles refer to the gravity

measurements. The lines indicate the profiles used in the gravity inversion.
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Fig. 11 — Original (blue lines) and modelled (red lines) of the Bouguer anomaly profiles: (a) IND-A to
IND-B of the Indiavai body, (b) AZT-A to AZT-B of the Azteca body, (c) FIG-A to FIG-B of the
Figueira Branca body, and (d) JAU-A to JAU-B of the Jauru body.

The modelled bodies display an overall northwest-southeast trend, varying from 6 to 10 km

in this direction, whereas their sizes in the northeast-southwest direction varied from 3 to 5
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km (Fig. 12). The shallower horizons of the bodies were kept in the surface, constrained by
the location the outcrops found in the field, and the vertical extensions ranged from
approximately 330 to 835 m. The vertical extension and, by consequence, the depth of the
bottom of the bodies are mostly speculative, as the ambiguity inherent to potential field
methods does not allow a precise estimation of these features, even considering the
knowledge about the magnetic susceptibility, remanent magnetization, and the location of

outcrops.
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Fig. 12 — Joint magnetic and gravity models of the Figueira Branca Suite. In detail, (a) Indiavai, (b)

Azteca, (c) Figueira Branca and (d) Jauru models.

The magnetization, magnetic susceptibility and density obtained in each model of the
Figueira Branca Suite (Fig. 10) agree with the context of gabbroic rocks intruded in a meta-
volcanosedimentary environment described by geochemical (this work) and geological
observations (D'Agrella-Filho et al., 2012; Teixeira et al., 2011). All cases presented similar
values for magnetic susceptibility (Table 3), leaving the cause of the difference in the
amplitude of the anomalies to the remanent magnetization. The shapes and depth extents can
be associated with sills, as suggested by Teixeira et al. (2011). The layers of different
lithologies could not be discriminated through the geophysical methods.
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5. Conclusions

The Figueira Branca Suite is a layered mafic-ultramafic complex, dated at 1425 Ma, intruded
into the Alto Jauru meta-volcanosedimentary group and adjacent to granites from the Santa
Helena Orogen. Using magnetic field and gamma-ray geophysical data, we delineated the
extent of the suite. Apart from the Indiavai, Azteca, Figueira Branca and Jauru bodies, only
two mafic intrusions in the northwest of the Jauru Terrane showed magnetic and gamma-ray
signatures that could be related with the suite, however these two intrusions were recognized
as the Morro do Leme and Morro do Sem-Boné complexes, part of the 1349 Ma Cacoal
Suite. No other geophysical signatures similar to the four intrusions of the Figueira Branca

Suite were found in the Jauru Terrane.

Thin sections of the Figueira Branca Suite indicated a mineralogy dominated by plagioclase,
olivine and variable amounts of intergrown pyroxene (0 to 30%). This mineralogy indicates
gabbroic rocks, as it was shown in the TAS. Magnetite is likely opaque minerals phase and is
present in all samples. The increase in the amount of pyroxene among the samples from one
intrusion to another in the Figueira Branca Suite suggests a fractionation in the parental
magma. REE analyses normalized to chondrites showed a trend of major enrichment of
LREE over HREE elements. The change in the slope of the REE normalized to chondrites
indicates an increase in the amount of melt in the parental magma. These two changes
suggest that the extraction of magma generated the bodies of the Figueira Branca Suite in the

sequence: Indiavai, Figueira Branca, Azteca and Jauru.

Magnetic and gravity fields were used to compose 3D models constrained by magnetic
susceptibility (average of 0.06) and density (average of 2.93 g/cm?®) measurements. This data
combined with new field investigation and geochemical data indicate sill-like shapes
extending 8 km on average in the northwest direction. The calculated remanent
magnetizations are similar to the direction suggested by previously published paleomagnetic

data of the Indiavai gabbro.

Trace element concentrations suggested that the parental magma of the Figueira Branca Suite
is associated with metasomatic processes of subduction zones. The magma was characterized
by hydrous melts, typical from supra-subduction environments. The northwest alignment of

the bodies, indicated by geological observation and geophysical modelling, is perpendicular
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to the direction of accretion of the terranes in southwest Amazon Craton and parallel to
regional shear zones. The suite is located to east-northeast of the orogen and paleo-
subduction zone that generated the Santa Helena orogen, marked by the Piratininga and

Caramujo shear zones (Fig. 1).

Previously published isotope data show a juvenile mantle source for the Figueira Branca
Suite. The integration of these data with those presented in this paper indicate that the
magmatism that generated the Figueira Branca Suite during a phase of extension of the Jauru
Terrane. This event occurred during the late stages of emplacement of the Santa Helena

orogeny (1425 Ma) and was interpreted as a magmatism in a back-arc setting.
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4. Manuscript 3: Magnetic Amazon: where was the Amazon Craton in Nuna?

So far, the Figueira Branca suite was evaluated in scales from microscopic to hundreds
of kilometres. In chapter 3, the Figueira Branca suite and the Jauru Terrane in the southwest of
the Amazon Craton were assessed with geophysical and geochemical methodologies. This

manuscript will increase the area of study once more to continental scales.

A back-arc extension in the later stages of the Santa Helena Orogen was responsible for
the intrusion of the Figueira Branca Suite. From a broader perspective, during the 1.6 to 1.4 Ga
period, the Amazon Craton had passed for most of its accretionary history, and would still face

the accretion of its youngest provinces, the Rondonian-San Ignacio and Sunsés.

The Paleo- to Mesoproterozoic period was marked by the supercontinent Nuna. A
variety of models proposed reconstructions for the supercontinent, with different constituent
fragments and geometries. The Amazon Craton has been shown attached and separated from
the Nuna's major landmass, and the central objective of this chapter is to investigate position
of the craton from 1.6 to 1.4 Ga. To achieve it, magnetic field data was used to analyse three
reconstructions of Nuna: (1) Mertanen and Pesonen (2012), which is based on paleomagnetic
data; (2) Pisarevsky et al. (2014), based on paleomagnetic and geological constraints; and (3)
Pehrsson et al. (2015) who integrated paleomagnetic and geological data with patterns and

features of ore deposit distribution.

The dataset used to evaluate the reconstructions was the global magnetic anomaly map,
EMAG?2 (Maus et al., 2009). It was used to map the Amazon and other cratons suggested to be
connected from 1.6 to 1.4 Ga: West African, Baltic and the North China cratons. Magnetic
field regimes and lineaments were used to evaluate coeval blocks of different cratons. By

recognizing the supercontinent reconstruction model that the magnetic field best supported, it
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was possible to suggest the condition and location of the Amazon Craton during the intrusion

of the Figueira Branca Suite.
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Abstract

A variety of reconstructions have been proposed for the Paleo- to Mesoproterozoic
supercontinent Nuna. Most involve the juxtaposition of Laurentia and Baltica with Siberia
occupying an adjacent or nearby position. But the disposition of other cratonic blocks around
these core elements, or whether they were even part of Nuna, is unresolved. We use magnetic
field data from the global magnetic anomaly map, EMAG2, from the Amazon, Baltic, West
African and North China cratons to observe potential continuity of magnetic lineaments and
regimes in domains of similar ages within these cratons. On this basis, a permissible early
Mesoproterozoic configuration of these cratonic fragments involves southwest Baltica
(Sarmatia) abutting the northern portion of the Amazon Craton (Maroni-Itacaiinas), whereas
the western or the southern border of West Africa would be close to, or connected with, the
northeast side of the Amazon Craton. This data is consistent with those models that locate the

Amazon Craton at the southern end of the main Nuna landmass.
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1. Introduction

The location and composition of the Paleo- to Mesoproterozoic supercontinent Nuna, also
known as Columbia and Hudsonland, and its constituent fragments is much debated and a
variety of models, some of which entail mutually exclusive configurations, have been proposed
(Evans and Mitchell, 2011; Johansson, 2009; Pisarevsky et al., 2014; Rogers and Santosh,
2002; Williams et al., 1991; Zhao et al., 2002; Zhao et al., 2004; Zhao et al., 2001).
Understanding the processes of supercontinent amalgamation and breakup, as well as their
paleogeographic configuration, provides valuable insights into the evolution of the Earth,
including the role of Large Igneous Provinces (LIP) (Youbi et al., 2013), their relationship to
patterns of ore deposits (Cawood and Hawkesworth, 2015; Pehrsson et al., 2015), and their
potential impact on the Earth’s surficial environments, including atmosphere and ocean

composition and the biosphere (e.g., Cawood and Hawkesworth, 2015, and references therein).

Historically, supercontinent reconstructions are based on the integration of one or more datasets
involving stratigraphic and tectonic correlations, geochemical and isotopic compositions, and
paleomagnetic data. In this paper, we evaluate the position of the Amazon Craton in the Nuna
supercontinent using magnetic field data and, in particular, we assess a number of recent
reconstructions that highlight the range of Nuna configurations and the datasets used to justify
those configurations, including: (1) Mertanen and Pesonen (2012), which is based on
paleomagnetic data; (2) Pisarevsky et al. (2014), based on paleomagnetic and geological
constraints; and (3) Pehrsson et al. (2015) who integrated paleomagnetic and geological data

with patterns and features of ore deposit distribution (Fig. 1).
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Nuna Reconstructions

(b) Pisarevsky et al. (2014)
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Fig. 1 — Reconstructions of Nuna proposed by (a) Mertanen and Pesonen (2012), (b)
Pisarevsky et al. (2014), and (c) Pehrsson et al. (2015).

Our assessment is based on a combination of Total Magnetic Field, the Amplitude of the
Analytic Signal 3D (Roest et al., 1992), and Tilt data (Verduzco et al., 2004) of the Amazon
and potential adjacent cratons, to compare magnetic signature, which along with geologic and

age data of these cratons enables us to revaluate proposed Nuna reconstructions. Unfortunately,
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paleopole data for the Amazon Craton for the relevant period of Nuna assembly is limited: the
1420 Ma Indiavai (D'Agrella-Filho et al., 2012) and Nova Guarita intrusives (Bispo-Santos et
al., 2012), and the 1790 Ma Colider (Bispo-Santos et al., 2008) and Avanavero intrusives (Reis
et al., 2013). The small number of Proterozoic reference poles in the Amazon Craton, as well
as West Africa (Pisarevsky et al., 2014), in part reflects the vast area of the Amazon forest
with limited access and poor exposure, as well as areas of civilian unrest, or of military and
strategic value, and thus complicates the reconstruction of the Amazon Craton in Nuna. In this
paper, we demonstrate that remotely accessed data, such as magnetic field data, can provide
additional information to constrain the relationship between blocks in Nuna. In particular, we
use magnetic field data and its products to evaluate field regimes and magnetic lineaments
within and between cratons. Magnetic field regimes are defined by the concentration of
magnetic anomalies within a designated region. The regimes can be interpreted as calm,
intermediate or agitated depending on the frequency pattern of the magnetic anomalies (Fig.
2). Magnetic lineaments are normally expressions of contacts, faults, boundaries between
terranes, and folds, where secondary magnetite is created through the insertion of oxygen in a

Fe-bearing environment (Grant, 1985b; Rotherham, 1997).

Magnetic Field Regimes

—— =

Amplitude of the Analytic Signal
0 866 1181 1576 2415 53920
O |

nT/m

Fig. 2 — Magnetic field regimes using the Amplitude of the Analytic Signal: (a) calm, (b)

intermediate, and (c) agitated.
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2. Geology of the Cratons

The evaluation of the role of Amazonia in Nuna, or indeed whether it was even part of Nuna,
requires an outline of available geological constrains. Our focus is the Amazon Craton and
most published models suggest that it is linked with one or more of West African, Baltic and/or

the North China cratons. Outlined below are the key geological features of these blocks.

2.1. Amazon Craton

Tassinari and Macambira (1999) and Teixeira et al. (2010) divide the Amazon craton into six
structural and geochronological provinces: Central Amazon (> 2.6 Ga), Maroni-Itacaiinas
(2.25 to 2.10 Ga), Ventuari-Tapajos (1.98 to 1.81 Ga), Rio Negro-Juruena (1.79 to 1.52 Ga),
Rondonian-San Ignacio (1.55 to 1.30 Ga) and Sunsas (1.28 to 0.97 Ga) (Fig. 3). The stable
Archean nuclei of the Central Amazon is a granite-greenstone terrain. It was not affected by
the 2.2 Ga to 1.9 Ga Trans-Amazonian Orogeny (Hurley et al., 1967), however

Paleoproterozoic magmatic and sedimentary events are recorded across this cratonic core.

LEGEND

l:l Phanerozoic Cover
l:l Late Neoproterozoic Mobile Belt

Geochronological Provinces

.] Sunsas: 1.28 Ga - 0.97 Ga (Exposed / Inferred)
l:l Rondonian-San Ignécio: 1.55 Ga - 1.30 Ga
|:] Rio Negro-Juruena: 1.79 Ga - 1.52 Ga

- Ventuari-Tapajés: 1.98 Ga - 1.81 Ga

[:] Maroni-Itacaiinas: 2.25 Ga - 2.10 Ga
- Central Amazon: > 2.6 Ga

Scale
| == == mm = |
1000 km

Fig. 3 — Geochronological provinces of the Amazon Craton (Bahlburg et al., 2009).
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The Paleoproterozoic Maroni-Itacaiinas Province is located to the northeast of the Central
Amazon and can be traced for 1500 km (Fig. 3). It is characterized by greenstone belts and
associated calc-alkaline granitoids, with large metavolcanic-sendimentary sequences
metamorphosed from greenschist to amphibolite facies (Tassinari and Macambira, 1999). To
the southwest of the Central Amazon, lies the northwest-southeast elongated Ventuari-Tapajos
province, composed of calc-alkaline granitoids with juvenile isotopic signatures (Cordani et
al., 2010). Further to the southwest, the Rio Negro-Juruena province of granite gneisses and
granitoids of granodioritic and tonalitic compositions forms a 2000 km long and 600 km wide

belt aligned northwest-southeast (Fig. 3).

The Rondonian-San Ignécio and Sunsas are the largest provinces of the Amazon Craton (Fig.
3). The 1.55 to 1.30 Ga Rondonian-San Ignicio has granite-gneiss-migmatitic terranes
metamorphosed to amphibolite or granulite facies composing its basement (Tassinari and
Macambira, 1999). Cordani and Teixeira (2007) associate the formation of the Rondonian-San
Ignacio province to the amalgamation of intra-oceanic magmatic arcs and accretionary prisms
and ultimately their collision to the southwest with the Rio Negro-Juruena province. The
Sunsas orogenic belt is the youngest province of the Amazon Craton. It is the expression of the
collision between Amazonia and Laurentia, during the assembly of the Rodinia (Cawood and
Pisarevsky, 2017; Sadowski and Bettencourt, 1996; Tohver et al., 2006). The Sunsés province
is characterized by metamorphosed volcano-plutonic-sedimentary sequences intruded by

Neoproterozoic granitic suites (Boger et al., 2005).

2.2. West African Craton

The West African Craton, northwest Africa (Fig. 4), has been stable since 2 Ga (Youbi et al.,
2013). It consists of the Archean Reguibat and Man shields to the north and south, respectively,
large Paleoproterozoic domains separated by cratonic sedimentary basins, and at the northern
end, the Anti Atlas belt. The Man shield is composed by TTG-type banded gneiss, older than
3.0 Ga (Beckinsale et al., 1980), overlain by greenstone belt lithologies intruded by granites.
The Reguibat Shield contain Archean and Paleoproterozoic migmatites interlayered with mafic
gneisses, greenstone belts, and voluminous tonalitic or granodioritic plutons (Key et al., 2008).

Between the shields, in the central portion of the West African Craton, the late Proterozoic to
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Paleozoic Taoudeni basin, and to the north of the Reguibat Shield, the Paleozoic Tindouf basin,
overlie basement (Guerrak, 1989; Windley, 1987).
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Fig. 4 — West African Craton (WAC) (Ennih and Liégeois, 2008).

The Anti-Atlas belt is located between the Alpine Atlas chain and the Tindouf basin. It is
composed of Proterozoic low- to medium-grade schists and intrusive granitoids, and a thick
(ca. 10 km) late Neoproterozoic to Paleozoic sedimentary cover (Soulaimani and Burkhard,
2008). Many orogenic cycles are recognized in the West African Craton, spanning from 3.5 to
1.75 Ga, along with the 750 to 550 Ma Pan African orogenic event (Ennih and Liégeois, 2008).
Soderlund et al. (2013), El Bahat et al. (2013), Kouyaté et al. (2013) and Youbi et al. (2013)

indicate that the interval from 1.7 to 1.0 Ga was marked by intraplate magmatic events.

2.3. Baltic Craton

Baltica is divisible into the Archean proto-continents of Sarmatia, Volgo-Uralia and
Fennoscandia (Fig. 5) that were assembled into Baltica along Paleoproterozoic to

Mesoproterozoic orogenic belts (Bogdanova et al., 2008).
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The Fennoscandian Shield, northwest Baltica, is surrounded by Paleoproterozoic crust formed
between 1.95 and 1.90 Ga, and intruded by the 1850-1650 Ma Transcandinavian Igneous Belt
(Bingen et al., 2008). Basement within the shield is cut by Anorthosite-Mangerite-Charnockite-
Granite (AMCG) (Emslie et al., 1994) and A-type granitoid suites, dolerite dykes and sills,
tholeiitic basalt, mafic metavolcanic rocks, and gabbro-tonalite complexes were emplaced
between 1.73 to 1.44 Ga (Bogdanova et al., 2006; Bogdanova et al., 2008). The Central Russian
collisional belt connects Fennoscandia and Sarmatia (Fig. 5). It contains blocks of Archean

rocks reworked during the Paleoproterozoic.
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Fig. 5 — Baltic Craton (Bogdanova et al., 2008).

The Volgo-Uralia Shield in eastern Baltica, contains granitic gneiss as old as 3.3 Ga
(Bogdanova et al., 2005) and is characterized by 3.0 to 2.7 Ga belts of metasedimentary and
metaigneous granulites, and subordinate komatiite-bearing greenstone sequences (Bogdanova
et al., 2008). The collisional belt between the Volgo-Uralia and Sarmatia contains turbiditic
pelites and greywackes with carbonaceous rocks (Shchipansky et al., 2007). To the north and
east of the Volgo-Uralia, lies an infered 1.4 to 0.7 Ga passive margin succession (Bogdanova

et al., 2008).

Sarmatia is the result of the amalgamation of 3.7 to 2.6 Ga blocks intercalated by 2.2 to 2.1 Ga
Paleoproterozoic belts (Bogdanova et al., 2008). Bogdanova et al. (2006) report north-south
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trends, both in the Paleoproterozoic belts and reworked Archean crust, but with an abrupt
change to a northeast-southwest orientation at the northeastern limit of the block. This change
marks the continental-margin igneous belt formed at 2.0 to 1.95 Ga with the collision of

Sarmatia with the Volgo-Uralia.

2.4. North China Craton

The North China Craton consists of four Archean blocks (Yinshan, Ordos, Longgang and
Nangrim), amalgamated by younger orogenic belts (Fig. 6) (Zhao and Cawood, 2012). The
Yinshan and the Ordos blocks are separated by the 1.95 to 1.92 Ga Khondalite Belt, which
together form the Western Block of the North China Craton (Dong et al., 2007; Wu et al., 2013;
Zhao and Cawood, 2012). The Longgang and the Nangrim blocks, united by the Jiao-Liao-Ji
belt at 1.90 Ga, constitute the Eastern Block of the North China Craton (Wu et al., 2013; Zhao
and Cawood, 2012). The Western and Eastern blocks collided at ca. 1.85 Ga, forming the
Paleoproterozoic Trans-North China Orogen (Zhao et al., 2012).

Legend

| [ ] Hidden/Exposed basement of Trans-North China Orogen
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Fig. 6 — North China Craton (Zhao et al., 2004).

The Yinshan Block is composed of Neoarchean tonalite-trondhjemite-granodiorite (TTG)
gneisses and minor supracrustal rocks metamorphosed at ca. 2.5 Ga (Wu et al., 2013). The 1.95
to 1.92 Ga Khondalite Belt, separating the Yinshan and the Ordos blocks is dominated by
gneisses, paragneisses, calc-silicate rocks and marbles (Zhao and Zhai, 2013). The Ordos
Block, to the south of the Khondalite Belt, is largely covered by the Mesozoic to Cenozoic

Ordos basin.
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In the Eastern Block, the Longgang and the Nangrim blocks consist of 3.8 to 3.0 Ga TTG
gneisses, 2.7-2.5 Ga syntectonic granitoids, supracrustal ultramafic (komatiitic) to felsic
volcanic rocks and metasedimentary rocks (Zhao et al., 2001). The Jiao-Liao-Ji Belt, separating
the Longgang and Nangrim blocks, is characterized by metamorphosed sedimentary-volcanic

successions and associated granitic and mafic intrusions (Zhao and Zhai, 2013).

The Trans-North China Orogen extends north-south for approximately 1200 km and is up to
300 km wide (Zhao et al., 2012). It contains late Neoarchean to early Paleoproterozoic (2560
to 2475 Ma) TTG gneisses, granitoids and greenstone belts developed under continental
magmatic arc, island arc- or back-arc basin environments (Wilde et al., 2005; Zhao et al., 2012;

Zhao and Zhai, 2013).

3. Methodology

3.1. Data

The magnetic field data used here was obtained through the Earth Magnetic Anomaly Grid
(EMAG?2) (Maus et al., 2009). This compiled and corrected data set incorporates satellite, ship
and airborne surveys, of which the last two had been given preference where available. The
resolution of the grid is 2 arc min (ca. 3.7 km in the equator), and the altitude normalized to 4
km above the geoid. Wavelengths longer than 330 km were obtained with the latest CHAMP
satellite magnetic field model MF6 (http:/geomag.org/models/MF6.html, accessed
28/02/2017).

3.2. Magnetic Field Techniques

We analysed the crustal magnetic field data obtained by EMAG2 to evaluate Nuna
reconstructions. Three features of the magnetic field were considered to facilitate comparison
of continental-scale structures: the magnetic regime (agitated, intermediate, or calm, e.g. Fig.

2), the size of the anomalies, and the orientation of the magnetic lineaments. The resolution

92



250
251

252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

277

278
279
280

and normalized altitude obtained from the EMAG2 are compatible with the scale of the

investigated tectonic features (> 3.7 km).

Geological and tectonic features usually present different amounts of magnetic minerals,
resulting in the generation of a magnetic signal, whether inserted in an external (geomagnetic)
field or not. Magnetite is a minor accessory mineral present in most rocks, rarely constituting
more than 1 % by volume of a rock (Grant, 1985a). The formation of magnetite, primary or
secondary, is mainly associated with the supply of oxygen in the system. The most important
factors that determine the bulk magnetic properties of a rock are the total iron content, the
oxidation state, the initial crystallization environment, the degree of metamorphism, the degree
of silica saturation, the grain size of original sediment (in metasedimentary rocks), and the

major element chemistry (Grant, 1985a).

The magnetic regimes were evaluated based on the frequency that magnetic anomalies appear
in each domain of the cratons. An agitated regime (Fig. 2) is interpreted to represent greater
tectonic activity through the entire history of the block, but not necessarily in a single period,
while intermediate and calm regimes indicate less active settings, e.g., passive margins
undergoing thermally driven subsidence (Olesen et al., 2007). To observe the magnetic
regimes, the Total Magnetic Field (TMI) and the Amplitude of the Analytic Signal 3D (AAS)
(Roest et al., 1992) were analysed. The TMI shows overall patterns of anomalies, but depends
on the geomagnetic (inducing) field at the time of the survey. This dependence is relevant in
studies of large areas, in which the magnetic field changes in orientation and intensity, i.e. the
present magnetic field in the Amazon Craton varies in inclination from -30° to +30°,
declination from -20° to -10°, and intensity from 33012 to 22890 nT, depending on the location,
whereas in Baltica, it changes from +68° to +78° in inclination, from -2° to +10° in declination,
and from 52952 to 54635 nT in intensity (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm,
accessed in 28/02/2017, the magnetic field refers to the International Geomagnetic Reference

Field model for same date the data was accessed in the website).
The AAS is given by the expression (Roest et al., 1992):
AAS =\[(0T/ox)? + (6T/dy)* HaT/ez)Y] (1)

where T refers to the TMI, and x, y, and z directions in Cartesian space. The AAS is one of the
most commonly used techniques to evaluate the lateral limits of sources of potential field

anomalies.
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Linked to the magnetic regime, the size of the anomalies was explored with the AAS (Figs. 7b,
8b, 9b and 10b). This technique, based on directional derivatives of the field, reveals the lateral
limits of discrete bodies and geological features. It displays little dependence on the direction
of the magnetic field, so the location of the anomaly or the presence of remanent magnetization
does not interfere with the results. Coeval domains connected at some point in Earth evolution
tend to present structures of similar sizes (Olesen et al., 2007) if no posterior event altered
significantly its composition and size. Regional tectonothermal events involving magmatism,
deformation and metamorphism can generate strain and thermal energy sufficient to alter the
size of the anomalies, whether by distorting the body, by changing and or extinguishing the
remanent magnetization, or by opening the system to oxygenated fluids and formation of
secondary magnetite. These changes can be observed in large areas that not necessarily are

limited to one specific domain.

The assembly of terranes and regional movements inside the cratons are considered by
evaluating the size of the anomalies. These events can alter the direction of magnetic
lineaments, especially close to the boundary zone, and less significantly in distal regions from
the event. The magnetic lineaments were assessed primarily with the Tilt technique (Verduzco

et al., 2004), and complemented by AAS. The Tilt technique is given by the relation:
TILT = tan™ {[N(8T/02)*)/ N[(6T/dx)* + (OT/oy)*]}  (2)
where T refers to the TMI, and x, y, and z directions in Cartesian space.

In successful supercontinent reconstructions, coeval stable domains in adjacent cratons, created
under similar circumstances, should display parallel to subparallel lineaments, and continuity
from one craton to another. Magnetic overprinting can occur after the stabilization of the
domain, commonly in cratonization events; for example, a regional thermal overprint occurred
in the southwest Amazon Craton at ca. 1.3 Ga (Bettencourt et al., 2010). This kind of event is
accompanied by tectonic reactivation, deformation, and magmatism, which are manifested by
extensive shear zones, mylonitic belts, rifts and sedimentary basins, and post-tectonic and
anorogenic intrusions (Cordani and Teixeira, 2007). The magnetic overprint can change the
orientation of the magnetic lineaments to directions that differ from those obtained during the
formation of the domain. Such later tectonic events are generally associated with a regional
thermal anomaly of sufficient magnitude to unblock the magnetic moments, which vary
depending on the mineral and size of the grains. These are large-scale events and were mostly

recognized in the cratons used in this work, and are incorporated into our interpretation.
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4. Magnetic Signatures

To aid the visualization and interpretation of tectonic provinces and lineaments, the colours of

the provinces were normalized to the colours used in the Amazon Craton map according with

their respective ages (Fig. 3). The age relations and magnetic regimes are summarized in Table

1.

Table 1 - The age relations and magnetic regimes of the Amazon, Baltic, West African and

North China Cratons.
Craton Terrane Normalization (AC) Magnetic Regime
Amazon Central Amazon n/a Agitated, decreasing to
the south
Amazon Maroni-Itacaiiinas n/a Agitated
Amazon Ventuari-Tapajos n/a Intermediate
Amazon Rio Negro-Juruena n/a Intermediate, increasing
to the south
Amazon Rondonian-San Ignacio n/a Calm to Intermediate
Amazon Sunsés wa Calm, agitation in the
central area
Amazon Phanerozoic Cover n/a Calm to Intermediate
Baltica Archean Crust Central Amazon Intermediate to agitated
. Archean Crust reworked - Volgo- . ., .
Baltica . . .. Maroni-Itacaiinas Calm to agitated
Uralia/Sarmatia Collision
Baltica Paleoproterozoic Cr'ust of Volgo- Maroni-Itacaiinas Intermediate to agitated
Sarmatia
Baltica Archean Crust rewo rked of Ventuari-Tapajos Calm
Fennoscandia
Baltica Paleoproterozoic Crust of Rio Negro-Juruena Intermediate to agitated
Fennoscandia
Baltica Central Russian collisional belt Rio Negro-Juruena Calm to intermediate
1.73 - 1.67 Ga crust reworked during
Baltica the Sveconorwegian orogeny (1.14 - Rio Negro-Juruena Calm
0.92 Ga)
1.66 - 1.52 Ga crust reworked during
Baltica the Sveconorwegian orogeny (1.14 - Rio Negro-Juruena Calm to intermediate
0.92 Ga)
Baltica 1.67-1.65 Ga AMCG and A-type Rio Negro-Juruena Intermediate
granitoid suites
Baltica 1.60 - 1.58 Ga AMCG and A-type Rio Negro-Juruena Agitated
granitoid suites
1.52 - 1.48 Ga crust reworked during .
. . Rondonian-San . .
Baltica the Sveconorwegian orogeny (1.14 - L. Calm to intermediate
Ignacio
0.92 Ga)
Baltica 1.55-1.44 Gg AMCQ and A-type Rondoqlap—San Agitated
granitoid suites Ignacio
Baltica Aulacogens and basms, 1r'1terna1 parts Rondon;ap—San Intermediate to agitated
of passive margins Ignécio
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Baltica Passive Margins (inferred) Sunsas Calm and agitated
West Africa Archean Central Amazon Agitated
West Africa Paleoproterozoic Maroni-Itacaiinas Calm to agitated

. ic + i . .
West Africa Neoprot.erozmc Cambrian Sunsas Intermediate to agitated
Sedimentary Cover
West Africa Pan-African Belts Phanerozoic Cover Intermediate
West Africa Paleozoic Sedimentary Cover Phanerozoic Cover Intermediate
West Africa Mesozoic to 1({:?5:; Sedimentary Phanerozoic Cover Intermediate to agitated
North China Archean to Paleoproterozoic Central Amazon Intermediate
basement

North China Trans-North China Orogen Ventuari-Tapajos Intermediate
North China Khondalite Belt Maroni-Itacaiinas Calm and agitated
North China Jiao-Liao Ji Belt Maroni-Itacaiinas Calm to intermediate

4.1. Amazon Craton

The Amazon Craton has a northwest-southeast trend of lithotectonic assemblages (e.g. Fig. 3)
that is mimicked by the magnetic field (Fig. 7). The limits of the various provinces recognized
within the craton are not clear from the magnetic data set alone, but with the support of
geological data, it was possible to associate specific magnetic signatures for each province. The
Central Amazon province shows an agitated magnetic domain in the north, with large
anomalies up to 100 km wide, and decreasing agitation and anomaly size to the south. The
Maroni-Itacaitnas province has an agitated magnetic domain, with anomalies up to 130 km
wide. The Ventuari-Tapajos, Rio Negro-Juruena, Rondonian-San Ignacio, and Sunsas
provinces show a progressive decrease in agitation and anomaly size. Further to the southwest,
in the Amazon basin, the magnetic signature shows a significant decrease of agitation in all
provinces. The areas proximal to the borders of the Amazon basin show a new increase of

agitation, but still maintaining the overall trend of a reduction in the size of the anomaly.
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Fig. 7— Amazon Craton: (a) TMI (b) AAS, (c) Tilt, and (d) Tilt map overlain by the

geological provinces and magnetic lineaments. The colours of the provinces were normalized

to the colours used in the Amazon Craton map (Fig. 4) according with their respective ages.
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The magnetic lineaments from the Amazon Craton show the overall northwest-southeast trend
displayed by the lithotectonic provinces (Fig. 7d). This trend is orthogonal to the northeast-
southwest-oriented accretion that occurred around the Central Amazon province since the
Paleoproterozoic. The area occupied by the Amazon Basin, central in the map and covered by
Phanerozoic cover, shows a significant decrease in the magnetic regime and in the volume of
lineaments. A major lineament crosscuts the craton from east to west, starting in the eastern

end of the Amazon basin and continuing through the Sunsas Belt to the western border.

4.2. West African Craton

The Archean shield regions of the West African Craton, are equivalent in age to the Central
Amazon province, and display an overall agitated regime (Fig. 8). The shields, however,
display large areas that lack data. The Paleoproterozoic domains display a calm regime in the
south, but agitated in the northern region proximal to the Anti-Atlas belt. In the areas dominated
by Neoproterozoic and Cambrian sedimentary cover, the magnetic field has intermediate
agitation in the southeast of the West African Craton, but an agitated character in the northeast,
proximal to the southern front of Variscan deformation. Like the Archean shields, the

Neoproterozoic and Cambrian cover incorporate large areas that lack data.
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Fig. 8 — West African Craton: (a) TMI, (b) AAS, (c) Tilt, and (d) Tilt map overlain by the

geological provinces and magnetic lineaments. The colours of the provinces were normalized

to the colours used in the Amazon Craton map (Fig. 4) according with their respective ages.
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The relatively small area representing the Pan-African belts within the West African Craton is
dominated by a small number of large anomalies up to 100 km wide. The Paleozoic to Recent
sedimentary cover, extending over most of the craton, shows intermediate agitation in the
magnetic regime. This cover displays a local increase in agitation when proximal to the
Southern Front of the Variscan deformation, in the northeast of the craton. Large areas without

data compose the sedimentary cover.

The north portion of West African Craton has a northwest-southeast trend, parallel to the Anti-
Atlas belt and the south Variscan front (Fig. 8d). Orthogonal, northeast-southwest-oriented,
lineaments can be seen in the Man Shield in the south of the craton and in the area covered by
Mesozoic to recent sediments in the centre of the craton. Significantly large areas in the
southwest and northwest West African Craton do not have available magnetic field data,

impeding further analysis.

4.3. Baltic Craton

The Baltic Craton shows an overall calm to intermediate magnetic field in its northern and
southern portions. A highly agitated east-west trend crosscuts the craton, occupying the region
south of Fennoscandia, the collisional orogens between Fennoscandia and Sarmatia, and
between Sarmatia and Volgo-Uralia (Fig. 9). We will refer to this trend as the Central Baltica
Magnetic regime. The Archean crust in Baltica shows an intermediate magnetic regime in the
central Archean terrane of Fennoscandia and in the Archean domain in southern Sarmatia. In
northern Fennoscandia and southwestern Sarmatia, the magnetic regime is agitated. In Volgo-
Uralia, the Archean crust presents an agitated regime, especially in its southern area (Central
Baltica Magnetic regime). In regions composed of reworked Archean crust, a calm regime

dominates the magnetic field, except in areas proximal to the Central Baltica Magnetic regime.
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Fig. 9 — Baltic Craton: (a) TMI, (b) AAS, (¢) Tilt, and (d) Tilt map overlain by the geological

provinces and magnetic lineaments. The colours of the provinces were normalized to the

colours used in the Amazon Craton map (Fig. 4) according with their respective ages.
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The magnetic field of the Paleoproterozoic crust of Fennoscandia and Volgo-Uralia, shows
higher agitation than Archean crust reworked during the same period (Figs. 5 and 9). The late
Paleoproterozoic to Mesoproterozoic structures and suites indicate an increasing magnetic
setting from calm in the east to agitated in the west, which experienced the late
Mesoproterozoic to early Neoproterozoic Sveconorwegian orogeny. In the Central Russian
collisional belt, the field remains calm. The mostly inferred passive margins along the northern
and eastern borders of the Baltic Craton (Fig. 5) show a predominantly calm regime, with very
long wavelength anomalies, typical of this type of tectonic setting (Nemcok, 2016; Parker Jr,
2014). The central area of Baltica, corresponding with the eastern limit of the Central Baltica

Magnetic regime, is characterized by a sudden increase in the magnetic regime to agitated.

The Fennoscandia, Sarmatia and Volgo-Uralia domains, and the intervening collisional
orogenic belts, are reflected in the distribution and orientation of the magnetic lineaments from
the Baltic craton (Fig. 9d). Fennoscandia shows a WNW-ESE trend in lineaments, except near
the western limit of the craton with the Sveconorwegian orogen, where the trend varies from
east-west to northeast-southwest. An almost orthogonal trend to the Fennoscandian shield
occurs in the collisional zone of Fennoscandia and Sarmatia and continues in the northeast-
southwest direction through the Central Russia Collisional Belt. The Volgo-Uralia shield
displays a similar ENE-WSW orientation. Sarmatia shows an overall northwest-southeast
orientation, slightly oblique to that in Fennoscandia. The inferred 1.4 to 0.7 Ga passive margins

of Baltic craton do not show a predominant trend of magnetic lineaments.

4.4. North China Craton

The North China Craton is characterized by long wavelength anomalies, and increasing
agitation near the limits between the Archean to Paleoproterozoic basement and the orogens
and belts (Fig. 10). A northeast-southwest trend is visible in all magnetic fields and derived
maps. The Archean to Paleoproterozoic basement presents intermediate to agitated regimes
with large magnetic anomalies. The magnetic regimes in the Ordos and Longgang blocks have
intermediate frequency, whereas the Yinshan block shows an increased concentration of
anomalies. The Nangrim Block, in the Eastern Block, does not have sufficient data to be

evaluated.
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Fig. 10 — North China Craton: (a) TMI, (b) AAS, (c) Tilt, and (d) Tilt map overlain by the
geological provinces and magnetic lineaments. The colours of the provinces were normalized

to the colours used in the Amazon Craton map (Fig. 4) according with their respective ages.

The Trans-North China Orogen displays a similar magnetic regime to that of the Ordos and
Longgang blocks, including long wavelengths and intermediate concentration of anomalies.
The Khondalite Belt varies from a calm regime in the west, near the border of the craton, to the
increasing agglomeration of large anomalies from the centre to the eastern end proximal to the
Trans-North China Orogen. The Jiao-Liao-Ji Belt has a calm regime in the south with sparse

anomalies from the centre to the northeast area.

In the Archean to Paleoproterozoic basement of the North China Craton, the magnetic
lineament trends show a northeast-southwest pattern in the Ordos Block (Western Block) and

northwest in the Longgang Block (Eastern Block) (Fig. 10d). The northwest portion of the
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craton, marked by the Yinshan Block and the Khondalite Belt shows a predominant east-west
trend. The northwest area, containing the Nangrim Block and the Jiao-Liao-Ji Belt, does not

have sufficient data to reveal a major trend.

5. Results

Based on mapping the magnetic regimes and lineaments for Amazonia, West Africa, Baltica,
and North China, Tilt maps were overlain by geological provinces and magnetic lineaments to
compare a variety of proposed Nuna reconstructions (Figs. 12, 14 and 16). This enables a visual
comparison of the alignment and possible continuity of magnetic lineaments within and
between the cratons. The continuity of provinces based on the magnetic field data was
compared with respect to available geological and paleomagnetic data to evaluate the Nuna
reconstructions of Mertanen and Pesonen (2012), Pisarevsky et al. (2014) and Pehrsson et al.

(2015).

5.1.Mertanen and Pesonen (2012)

Mertanen and Pesonen (2012) used a compilation of Precambrian paleopoles with minimum
Q-values of four (Van der Voo, 1990) to propose Nuna reconstructions for 2.45, 1.88, 1.78,
1.63, 1.53, 1.26 and 1.04 Ga. The Q-value is a 7-point measure that determines the quality of
a paleopole measurement. Their reconstructions show that by 1.53 Ga an assembled Nuna
included a continuous landmass formed by Amazonia, Baltica, Laurentia and Australia (Fig.
11). Siberia and North China cratons are disconnected from this main landmass reflecting a
lack of continuity between their Paleoproterozoic and older orogenic belts with coeval units in
their proposed reconstruction. The position of Amazonia with respect to Baltica is based on the
inferred continuity of the 1.9 Ga to 1.8 Ga Ventuari-Tapajos Province with the Svecofennian,
and the 1.8 Ga to 1.5 Ga Rio Negro-Juruena provinces with the Trans-Scandinavian Igneous
Belt. Laurentia is orientated so the 1.8 Ga to 1.5 Ga orogenic belts along its eastern and
southwestern margins face an open ocean, thus forming a long lasting accretionary orogen that
was only terminated with the Mesoproterozoic Grenville collisional event (Cawood and

Pisarevsky, 2017; Hynes and Rivers, 2010; Karlstrom et al., 2000; Zhao et al., 2002).
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Fig. 11 — Nuna reconstruction at 1.53 Ga.

The Nuna reconstruction proposed by Mertanen and Pesonen (2012) shows Baltica and the
North China cratons adjacent to the Amazon Craton (Figs. 11 and 12). The Amazon Craton is
rotated approximately 35° clockwise, whereas Baltica is rotated 20° and North China 78° anti-
clockwise relative to their present orientation. The magnetic lineaments of the Paleo- to
Mesoproterozoic domains from Amazon and Baltica are sub-parallel, displaying a northwest-
southeast trend. The Archean Central Amazon and the Archean crust of Sarmatia maintain this
alignment and suggest a connection of both cratons. Although the apparent geological and
geochronological continuity of the Longgang Block and the Trans-North China Orogen with
the Archean and Paleo- to Mesoproterozoic crust of Fennoscandia support their reconstruction,
the magnetic lineaments of North China Craton are near orthogonal to those of Fennoscandia

(Fig. 12).
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Fig. 12 — Nuna reconstruction at 1.53 Ga of the Amazon and adjacent cratons, Baltica and
North China, according to Mertanen and Pesonen (2012), added by the magnetic lineaments.
The colours of the geological units in Baltic and North China cratons were normalized to the

colours of provinces of similar age in the Amazon Craton.
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5.2. Pisarevsky et al. (2014)

Pisarevsky et al. (2014) used apparent polar wander paths (APWPs) and coeval paired
paleopoles between continents to evaluate possible cratonic connections during the
Proterozoic. They propose a model in which two separated landmasses, East and West Nuna,
formed a single supercontinent between 1650 and 1580 Ma. Pisarevsky et al. (2014) present
the evolution of the Nuna through a series of global paleogeographic reconstructions for 1770,
1720, 1650, 1580, 1500, 1470, 1450, 1380 and 1270 Ma. West Nuna was composed by
Laurentia, Baltica and possibly India, whereas the East Nuna contained Australia, Mawson
(Antarctica), and North China. After ca. 1500 Ma, Siberia and Congo/Sao Francisco joined

Nuna, whereas West African and the Amazon cratons formed a separate continent from Nuna

(Fig. 13).
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In the Pisarevsky et al. (2014) reconstruction the Amazon and the West African cratons are
separate from the Nuna supercontinent. Both cratons lie northwest of the main Nuna landmass
with Amazonia rotated 137° and the West Africa 74° anti-clockwise relative to their present
orientation. No geological or geochronological continuity between the two cratons is visible in
this reconstruction (Fig. 14). The Paleoproterozoic Maroni-Itacaiunas (1.98 to 1.81 Ga)
presents a northeast-southwest trend in the magnetic lineaments subparallel with one of the two
trends shown in the Man Shield. None of the remaining domains from the West African Craton

display a similar parallelism with coeval provinces in the Amazon Craton.
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Fig. 14 — 1450 Ga Nuna reconstruction of the Amazon and the adjacent West Africa, added
by the magnetic lineaments. The colours of the geological units in the West African Craton

were normalized to the colours of provinces of similar age in the Amazon Craton.
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5.3. Pehrsson et al. (2015)

The reconstruction proposed by Pehrsson et al. (2015) attempts to integrate data from previous
models, including paleomagnetic data, with constraints from ore deposit as the formation and
preservation of such deposits is linked to the supercontinent cycle (Cawood and Hawkesworth,
2015). The deposits types were used to test the reconstructions, based on the expected
environment and age for each deposit type; i.e. volcanic-hosted massive sulphides in collisional
or accretionary settings, sediment-hosted copper deposits in extensional settings, and uranium

mineralization in subtropical latitudes.

Pehrsson et al. (2015) show a Nuna reconstruction from 1.6 and 1.4 Ga (Fig. 15), with a main
landmass composed of Laurentia, Baltic, Amazon, Rio de la Plata, West African, Siberia and
Sdo Francisco/Congo cratons. Proto-Australia (South, North and West Australia) and the
Yangtze cratons are located northeast of the main Nuna mass and separated by a zone
undergoing regional extension, leading ultimately to ocean formation. North China, North and

South India, Rayner and the Kalahari cratons are separate from Nuna.
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Fig. 15 — Reconstruction of Nuna for the period from 1.6 to 1.45 Ga.

The Pehrsson et al. (2015) reconstruction locates the Amazon Craton in the southern
hemisphere, to the south-southeast of Baltica and to the southwest of West Africa (Fig. 16).
This reconstruction involves anticlockwise rotation of the Amazon Craton by 20°, Baltica by
51°, and West Africa by 48°. The WNW-ESE-oriented magnetic lineaments of the Ventuari-
Tapajos province are subparallel to the lineaments in the Paleo- to Mesoproterozoic crust of
Fennoscandia, so are the lineaments in the Maroni-Itacaitnas and the Paleoproterozoic crust of
Sarmatia (Fig. 5). The West African Craton, connected with the present east of the Amazon
Craton, displays a similar parallelism between the lineaments of the coeval Man Shield (West
Africa), the Maroni-Itacaitinas province (Amazon) and the Sarmatia Paleoproterozoic crust

(Baltica). Lineaments from the south of the Central Amazon province also show a subparallel
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6. Discussion

Magnetic anomaly patterns of sources in blocks of different cratons should be different of each
other, unless they were together during their formation and/or overprinted during reworking by
younger events. The comparison of anomalies for the Amazon, West African, Baltic and North
China cratons shows that coeval and possibly related Paleo- to Mesoproterozoic domains in
the different cratons have different sizes of anomalies. Thus, the wavelength of anomalies for
Amazon and West Africa are predominantly larger than those in Baltica (Figs. 7 to 9; compare
the Maroni-Itacaiinas, Man Shield and the Paleo- to Mesoproterozoic crust of Fennoscandia).
Reasons for these differences could include distortion caused by different projections of large

landmasses, and the different resolution and amount of data of the compiled magnetic surveys.

In the Mertanen and Pesonen (2012) reconstruction, the approximately coeval Paleo- to
Mesoproterozoic provinces in Amazon, Baltic and North China cratons show north-south
continuity between the first two cratons, and northwest-southeast with the last two. The
Longgang Block of the North China Craton is well aligned with the Archean crust of
Fennoscandia, and the Mesoproterozoic terranes (1.79 to 1.52 Ga) of Amazon and
Fennoscandia also maintain continuity. The continuity does not, however, extend to the
Archean Western Block of North China Craton, which has no counterpart in either Amazon or
Baltica. These latter two cratons were still accreting younger provinces until 1.53 Ga, whereas
the North China was already stabilized by this time. The lineaments in the 1.98 to 1.81 Ga
domains in Amazon and Baltica are well aligned but not with the North China Craton, which
are almost orthogonal orientation to those in the other two cratons. The Amazon and Baltica
domains show concordant magnetic regimes, which again cannot be extended to those of the

North China Craton.

The model of Pisarevsky et al. (2014) is the only one in which the Amazon Craton, along with
West Affrica, is not included within Nuna in the Mesoproterozoic (Figs. 1 and 14). The relative
orientation and juxtaposition of Amazonia and West Africa proposed by Pisarevsky et al.
(2014) is not supported by the geological and magnetic data which lack continuity between the
two cratons, except perhaps for a small number of lineaments in the Maroni-Itacaiiinas
province and Man Shield due to 2.15-2.14 Ga calc-alkaline magmatism in the former (da Rosa-
Costa et al., 2006), and the 2.15 Ga Eburnean orogeny in the latter (Abouchami et al., 1990).

The Maroni-Itacaiinas province and the Man Shield, however, show divergent magnetic
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regimes, the Amazonic domain shows an agitated behaviour, whereas the West African Man

Shield presents a calm regime.

Pehrsson et al. (2015), like Mertanen and Pesonen (2012), locate Baltica to the north of the
Amazon Craton but with a further additional rotation of Baltica to further enhance geological
compatibility and continuity of the 1.98 to 1.81 Ga Ventuari-Tapajos province of the Amazon
Craton with the coeval terranes of Fennoscandia. This rotation promoted the contact of the 2.25
to 2.10 Ga Maroni-Itacaitinas with the reworked 2.20 to 2.00 Paleoproterozoic crust of
Sarmatia. This contact, in the Tilt map (Fig. 14), reveals possible lineament continuity in the
extreme north of the Amazonic domain with the Sarmatian crust to the southwest. As discussed
with respect to the Mertanen and Pesonen (2012) reconstruction, the connection of Baltica with
the Amazon Craton is supported by the magnetic regimes of the coeval domains. The West
African Craton, which is significantly rotated from the position proposed by Pisarevsky et al.
(2014), allows the alignment of the lineaments from the Central Amazon and the Maroni-
Itacaitunas provinces with the Archean domain and Man Shield, respectively. Evaluating the
continuity and parallelism of lineaments between the West Africa and Baltica is impaired by

the absence of data in several areas of the West African Craton.

7. Conclusions

The configuration of the Nuna supercontinent is a matter of ongoing debate as indicated by the
diverse distribution of cratonic blocks in the recent reconstructions of Mertanen and Pesonen
(2012), Pisarevsky et al. (2014), and Pehrsson et al. (2015). These models, as well as many
others (e.g. D'Agrella-Filho et al., 2012; Evans and Mitchell, 2011; Johansson, 2009; Rogers
and Santosh, 2002; Zhao et al., 2004), involve a similar configuration for the supercontinents
cratonic core juxtaposing northeast Laurentia and northern Baltica, with Siberia occupying an
adjacent or nearby position (e.g. Fig. 1). But the configuration of other continental blocks with
respect to this core assemblage, and even if these other cratonic fragments were part of Nuna
or separate continents, is unresolved. Most attempts to reconstruct Nuna are based on a
combination of geologic, geochemical, paleomagnetic, ore deposit data, with variations
between models often reflecting differences in the emphasis placed on the different data sets.
Thus, in the models evaluated here in, Mertanen and Pesonen (2012) and Pisarevsky et al.

(2014) integrated a combination of geological and paleomagnetic data, while Pehrsson et al.
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(2015) also used isotopic and ore deposit data. In our evaluation of models of Nuna
reconstruction, we incorporated a worldwide compilation of magnetic field data (magnetic field
EMAG?2). We used this to analyse the magnetic regime of each of the lithotectonic domains
recognized in the Amazon, West African, Baltic and North China cratons, as well as the
wavelength of the magnetic anomalies, and magnetic lineaments, which we then compare with

proposed paleogeographic configurations for these blocks.

Similarities in the geology, age, magnetic regime, and lineaments between Archean to
Mesoproterozoic domains of the Amazon and Baltic cratons are consistent with the
reconstructions of Mertanen and Pesonen (2012) and Pehrsson et al. (2015). The geological
data for the North China Craton shows some similarities to the adjoining Amazonia and Baltic
cratons in the configuration proposed by Mertanen and Pesonen (2012), but not in the magnetic
field evidence. The connections between the West African and Amazon cratons proposed by
Pisarevsky et al. (2014) and Pehrsson et al. (2015) are not entirely supported by the magnetic
field data. However, juxtaposition of the present western or southern border of the West
African Craton with the northeast of the Amazon Craton would align the magnetic features of

the two cratons.

Of three Nuna evaluated reconstructions, the model of Pehrsson et al. (2015) agrees best with
the magnetic field data. It locates the Amazon Craton towards the southern portion of the Nuna
supercontinent, connected to the West African and Baltic cratons, with an open ocean to its

west, where continuous accretion would occur until the mid-Neoproterozoic.
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5. Conclusions

A few questions were raised in the introduction of this thesis. The questions argued
about how much a single suite can tell about itself and the environment around it, about honest
mistakes in during geophysical modelling, and the Earth evolution. Three papers were
presented proposing answers for these questions. First, a study considering the effects that
using inaccurate constraints have in the outcome of potential field data modelling. Then, the
development of a geophysical model from this suite, and a geochemical analysis of the tectonic
framework and parental magma that resulted in the intrusion of the Figueira Branca Suite. The
third and last part of the thesis consisted on using magnetic field data to evaluate supercontinent

reconstruction models.

The Figueira Branca Suite is a 1425 Ma layered mafic-ultramafic complex intruded in
the Alto Jauru group, southwest Amazon Craton. This suite has been focus of isotopic and
paleomagnetic studies, and was the centre of the three studies that composed this thesis. The
suite is composed by four northwest-southeast-oriented bodies: Indiavai, Azteca, Figueira
Branca and Jauru, from southeast to northwest. The environment that surrounds the Figueira
Branca Suite consists in the 1.8 Ga Alto Jauru meta-volcanosedimentary group that hosts the

suite, the granite-gneiss Santa Helena (to the west) and Agua Clara (to the east) suites.

Modelling, in Earth Sciences, is the ultimate effort to represent a part of the Earth that
cannot be entirely seen. Geophysics and geochemistry are two of the sciences that most
frequently use modelling. This thesis repeatedly used this resource, from testing how a
microscopic analysis affects the constraints used in the modelling, to the evaluation of

supercontinent reconstruction models with magnetic field data.
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Preliminary data showed abnormally low values of density and magnetic susceptibility
in hand samples of the Figueira Branca Suite. A preliminary model was developed using these
values as constraints. The shape, depth and remanent magnetization from this model, however,
did not agree with geological observations and paleomagnetic data. Hand samples did not
display clear signs of weathering or evidences that could explain the low properties, so thin
sections were extracted to investigate their possible cause. The thin sections displayed intense
weathering and serpentinization in some samples. This process justified a deeper investigation
on how and how much an inaccurate constraint affect the outcome from modelling. In this case,
the density and the magnetic susceptibility were evaluated for gravity (Bouguer anomaly) and

magnetic field respectively.

The investigation of the effects of inaccurate constraints was made using a synthetic
model and real data from the Indiavai body, the southernmost intrusion of the Figueira Branca
Suite. The investigated cases proved that using inaccurate constraints can produce errors about
50% higher than the correct and shapes significantly different than the reality. The results also
showed that in cases that a more thorough analysis in the sources of the constraints, the best
solution is to perform the modelling setting the constraints free, instead of fixing inaccurate
values and forcing the reduction of the error through the variation of depth and shape of the

models.

With a reliable modelling methodology and constraints, it was possible to model the
remaining anomalies of the suite. Previous studies of the Figueira Branca Suite suggest that it
extended further to the north and northeast of the four cited bodies. However, no other analogue
geophysical signature in the Jauru Terrane represented an intrusion of the same geological

characteristics of the Figueira Branca Suite bodies.
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The geophysical models obtained for the suite intrusive bodies displayed very shallow
sill-like shapes extending 8 km on average in the northwest direction. Mineralogy and
geochemical data indicated gabbroic rocks with predominance of plagioclase, olivine, and
variable amounts of intergrown pyroxene. The increasing presence of pyroxene indicated a
fractionation in the parental magma, whereas the change in the slope of the REE normalized to
chondrites suggested an increase in the amount of melt. Both datasets together permitted to
propose the sequence of magma extraction that generated the bodies of the Figueira Branca
Suite was: Indiavai, Figueira Branca, Azteca and Jauru. Trace elements completed the data,
displaying evidences of hydrous melts in the parental magma, typical from supra-subduction
environments. This geochemical signature for the parental magma, associated with the tectonic
framework where the suite is hosted, was interpreted as a magmatism in the back-arc zone of

the Santa Helena Orogen.

The answers for how much a suite can tell about itself and the environment that hosts
it, and the larger scale analysis of the Jauru Terrane raised the last question: what about the
Earth evolution? Where was the Amazon Craton by the time of the Santa Helena orogeny, and
when was the Figueira Branca Suite intrusive event? The supercontinent Nuna position and the
cratonic fragments that composed it are a matter of ongoing debate. By consequence, the debate
extends to the Amazon Craton. Supercontinent reconstructions varies depending the amount
and kind of data used to constraint them (e.g. combination of geologic, geochemical,
paleomagnetic, and ore deposit data). Three recent reconstructions Mertanen and Pesonen
(2012), Pisarevsky et al. (2014), and Pehrsson et al. (2015) suggest different configurations for
the Nuna supercontinent, where Amazonia is adjacent to the West African, Baltic and/or the
North China cratons. Using a worldwide compilation of magnetic field data (EMAG?2), these
reconstructions were analysed based on the magnetic regimes and lineaments of each block,

and then the proposed paleogeographic configurations for these blocks.
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None of the reconstructions were entirely supported by the magnetic field data, however
Pehrsson et al. (2015) reconstruction agrees best with it. This reconstruction locates the
Amazon Craton towards the southern portion of the supercontinent, connected in the northeast
to the West Africa, and in the north to Baltica cratons. In this reconstruction, the southwest of
the Amazon Craton has open ocean to its west, where continuous accretion would occur until
the mid-Neoproterozoic, forming the Santa Helena Orogen and, later, the back-arc extension

that permitted the intrusion of the Figueira Branca Suite.
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ABSTRACT AEROGAMMASPECTROMETRY AND ITS APPLICATIONS IN GEOLOGICAL MAPPING. The
substantial increase of geological information in recent years contributed a lot to understand the Brazilian mineral potential.
However, much remains to be studied. The geophysics, based especially on potential methods and gamma-spectrometry, has
wide applicability on delimiting geotectonic structures and on locating mineral exploration targets. In this work, we focus on
interpreting the natural emission of gamma radiation detected on the surface associated to the main radioelements. 1o this,
we presented a description of the main characteristics and data corrections used for an airborne survey. The interpretation
of gamma-spectrometric data allows characterizing regions with undifferentiated lithological units, detecting the presence of
outcropping igneous intrusions, hydrographic elements, hydrothermal alteration and/or intense erosive processes, contributing
significantly on the understanding of a region. ‘10 illustrate the contribution, we present as case studies the analysis of data
from the region of the Santa Helena Granitic Batholith (MT) and from the Alkaline-Carbonatite Complex of Tapira
(MG) Citation: Ribeiro V.B., Mantovani M.S.M., Louro V.H.A. 2014. Aerogamaespectrometria e suas aplicagdes no mapeamento geoldgico.
Terre Didatica, 10(1):29-51. <http://www.ige.unicamp.br/terraedidatica/>.

KEYWORDS: Gamimna ray spectrometry, aerial survey, interpretation of radiometric data.

RESUMO O aumento substancial de informagdes geoldgicas nos iltimos anos contribuiu muito para o conhecimento
do potencial mineral do Brasil. Entretanto, ainda hd muito a ser estudado. A geofisica, especialmente baseada em métodos
potenciais e gamaespectrométricos, tem grande aplicabilidade na delimitagao de estruturas geotectdnicas e na localizagdo de
alvos exploratérios minerais. Neste trabalho focalizamos a interpretagao da emissao de radiagdo gama natural detectada na
supetficie associada aos principais radioelementos. Para tal, apresentamos uma descri¢ao das caracteristicas do aerolevanta-
mento e das corregdes realizadas. A interpretagdo de dados gamaespectrométricos permite caracterizar regides com unidades
litoldgicas indivisas, detectar a presenga de intrusoes igneas aflorantes, elementos hidrogrdficos, alteragao hidrotermal e/ou
intensos processos erosivos, contribuindo significativamente para o entendimento de uma regido. Para ilustrar a contribui-
¢do, apresentamos como estudos de caso a andlise de dados da regido do Batélito Granitico de Santa Helena (MT) e do
Complexo Alcalino-Carbonatitico de Tapira (MG).

PALAVRAS-CHAVES: Gamaespectrometria, aerolevantamento, interpretagio de dados radiométricos.
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Magnetic field analysis of Morro do Leme nickel deposit

Vinicius Hector Abud Louro', Marta Silvia Maria Mantovani', and Vanessa Biondo Ribeiro'

ABSTRACT

The Morro do Leme laterite nickel deposit lies inside the
western border of the Parecis Basin (Brazil). This deposit is
characterized by high concentrations of lateritic Ni (about
1.8%) and anomalous contents of Pd, Au, Cu, Na, Co, Zn,
and Pt in a peridotite and dunite layered intrusion. Besides
the existence of geochemical and drilling data, the 3D dis-
tribution in the subsurface of this layered intrusion is still
unknown. An airborne magnetic survey revealed three
east—west elongated magnetic anomalies, characterized by a
significant remanent magnetization. The sources of these
anomalies were delimitated laterally and had their depths
estimated between 90 and 150 m, using techniques that use
derivatives. Further, the total magnetization direction was
obtained from a distortion analysis of the magnetic anoma-
lies. All these data were united in an initial model for the 3D
inversion of the magnetic data. The total and induced mag-
netization directions were attributed to the inverted model of
0.12 (SI) susceptibility, allowing indirect estimation of the
remanence. The model, defined by the depth, the inversion,
and the remanence estimates, linked the intrusion to ana-
logue events in the Rondonian-San Igndcio Province. The
results indicated that to explore for laterite Ni, the best lo-
cations are the southern part of the main anomaly and in the
cover above the two smaller anomalies, whereas to explore
for Pd, Au, Cu, Na, Co, Zn, and/or Pt, the indicated region is
the central portion of the main anomaly.

INTRODUCTION

Nickel laterite deposits are derived from the chemical alteration
of olivine-bearing mafic and ultramafic rocks such as dunites and
olivine-pyroxene peridotites (Brand et al., 1998).

In the west portion of the Mato Grosso state (Brazil) is the Co-
modoro Nickel District, characterized by the deposits of Morro do
Leme and Morro do Sem Boné, with known occurrences of lateritic
nickel. The Morro do Leme total reserves are 14,306,000 t with Ni
concentrations of 1.8% (Nunes, 2000).

The Morro do Leme deposit encompasses three hills comprised
essentially of dunites and peridotites covered by a laterite layer.
Nunes (2000) indicates that the main Ni concentration is located
in this layer, the thickness of which ranges from 20 to 40 m. In
deeper horizons (approximately 150 m deep), there are intercalated
magmatic concentrations of sulfides and chromites, presenting
anomalous values for Pd, Au, Cu, Na, Co, Zn, and Pt.

This work analyzed the magnetic field of the deposit considering
previous geologic surface mapping and borehole data from its
southeastern portion. A procedure using enhanced horizontal deriv-
atives (EHDs) (Fedi and Florio, 2001), to estimate the source border
and, further, its depth — named here as the EHD-depth — is
based on Hsu et al. (1998). The MaxiMin technique (Fedi et al.,
1994) used to estimate the angles of the magnetization components.
Using these estimates, we composed an initial model for a further
inversion of the magnetic data to determine the susceptibility.
The magnetization components (geomagnetic and directions esti-
mated through the MaxiMin), when applied to the distribution of
susceptibility, generated a scenario in which it was possible to
indicate an apparent remanent magnetization that explained the
anomaly.

This analysis and its results evidenced regional magnetic field
features for the time of crystallization of the deposit’s protolith
along the best exploration zones for the laterite Ni and for the Pd,
Au, Cu, Na, Co, Zn, and Pt-rich horizons.

GEOLOGIC CONTEXT

In the Alto Guaporé belt from the Rondonian-San Ignécio Igne-
ous Province (RSIP), lies the Alto Guaporé Sequence, characterized
by Phanerozoic sediments; such types of sediments usually have
very low magnetic susceptibility (107 to 10~* SI) (Telford et al.,
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ABSTRACT

The Catalio I alkaline-carbonatite complex, which is located in Central Brazil, is
one of the main producers of niobium and phosphates in the world. It has been in-
tensely studied geologically and geochemically for its economic potential. This work
presents a geophysical analysis over this complex, identifying its behaviour in the
subsurface and in portions that have not been explored yet. Different geophysical
methods and techniques were applied to achieve the most reliable results possible: at
the surface, through radiometric, geological, and topographic data, and at depth, by
geological, magnetic, and gravimetric data. The analysis was successfully completed
with inversions of gravity and magnetic data that resulted in quite similar models,
both in volume and shape. Their density and magnetic susceptibility contrasts were
consistent with the expected dunite-pyroxenite lithology from the original mafic in-
trusion and indicated (by exclusion) the volume of the carbonatite body, which along
with the known contents of phosphates and niobium allowed an indirect estimate of
the reserves and resources of the complex.

Key words: Magnetics, Gravity, Inversion.

INTRODUCTION that do not fit into the structure of the common rock-forming
- ) . . minerals. The alkaline magmas are enriched in elements such
Cataldo I is an ultra-mafic alkaline carbonatite complex, ap- ; ) T ] ) o
. . . . . as zirconium, niobium, strontium, barium, lithium, and the
proximately circular, emplaced in the Proterozoic granite- ) .
. . ) REEs. When these magmas rise through the crust, their chem-
gneiss basement and covered by schists from the Araxa Group
along the 125AZ lineament, SE of Goias State. Rich in Ti,
Nb, P, rare-earth elements (REEs) and vermiculite, it is sur-
rounded by kimberlites (Biondi 2003). K-Ar data dates the
complex between 82.9 + 4.2 and 85.0 &+ 6.9 Ma (Hasui and
Cordani 1968; Sonoki and Garda 1988; Gomes, Ruberti, and
Morbidelli 1990).

Alkaline igneous rocks are formed from cooling of mag-

ical composition undergoes further changes resulting in a large
diversity of rock types that are variably enriched in economic
elements (Long ef al. 2010).

Alkaline and alkaline-carbonatite complexes dated early
to late Cretaceous occur along lineaments in and around the
Parana Basin (South America), with their emplacement regu-
lated by extensional tectonics. In this context, Cataldo I was
included in the Alto Paranaiba Igneous Province (APIP). Ac-
cording to Gibson et al. (1995), the Minas-Goias Alkaline
Province, which includes the APIP, represents one of the most

mas derived by small degrees of partial melting of rocks in the
Earth’s mantle. The formation of alkaline rocks is reported

as a geologic process that extracts and concentrates elements ) ) ] p
voluminous potassium provinces of the world (larger than 10

km?) where, James et al. (1993) obtained a crustal thickness
of 40 km and a 130-km-thick lithosphere from seismic data.
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ABSTRACT

The Buraco da Velha copper deposit lies at the northern limit of the Parecis
Basin in the Colorado Graben, Rondénia, Brazil. New geophysical data indicates the
presence of a magnetic source below and to the north of the Buraco da Velha deposit,
where it corresponds with high gamma-ray U, Th and K counts. The source of the
magnetic anomaly was studied and delineated through derivative transforms, Euler
Deconvolution, MaxiMin total magnetization direction analysis, staged inverse
modeling, Th/K ratio, and radiometric ternary image. The magnetic anomaly is elongate
in east-west direction and measures 23 km by 6 km, and the top of the source is
estimated to lie at depths mostly between 50 and 100 meters. Based on the magnetic
model, we indirectly estimate a Jurassic to Cretaceous age, which is compatible with the
180 to 80 Ma range dated for the copper mineralization. Gamma-ray data are consistent
with hydrothermal alteration in the sedimentary cover and with the presence of an
intrusion in the subsurface. We suggest that the intrusion of the magnetic body
generated the necessary thermal energy to mix an already oxidized brine and sulfide-
bearing fluids in the border of Parecis Basin, leading to copper deposition and providing
a potential analogue for similar environments of mineral deposits elsewhere, such as in

the Kupferschiefer deposit (Poland) and Zambia Copper Belt (Zambia).

Keywords: magnetics, modelling, sediment, radiometrics, South America
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Key Points:

e A brief review of radiometric data processing and interpretation and, for the first time,
examples of possible errors related with incorrect processing.

e This paper is the first to analyze both how and why the radiometric response can vary for
the same deposit and the type of information that can be extracted.

e Description of the characteristic signatures of a number of exploration targets, which may
allow composition of a database to identify possible new targets worldwide.

e Examples described in this work vary from the study of geomorphology and weathering
influence, undifferentiated lithologies, mineral, hydrocarbon and geothermal exploration,
crustal structure, impact craters, and environmental monitoring.
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Abstract

The gamma spectrometric method is an important geophysical exploration technique with
widespread applications in the geosciences, from local environmental applications to regional
geologic mapping. The method has evolved over several decades and recent advances continue
to present new outbreaks in instrumentation, data processing and interpretation.

Radioelement concentrations measured by gamma-ray spectroscopy reflect the mineral
composition of an outcrop. However, magmatism, erosion, hydrothermal activity and/or tectonic
events can significantly change the gamma signature. This work explores how different
processes affect the emission of radioelements and how information can be extracted from this.
The radiometric response of several geological terrains with different tectonic histories were
compared, whereas radiometric signatures of granitic intrusions, alluvium regions, craters and
shear zones were demonstrated. The results show how the gamma spectrometric method can
contribute significant information, can complement and go beyond the superficial geology.

1 Introduction

The gamma spectrometric method considers the natural decay of K, equivalent Th and U
(eTh and eU, respectively) and maps these element’s distribution spatially. The method has a
broad range of applications, such as: identifying outcropping points of igneous intrusions
[Ribeiro, 2014], characterization of undifferentiated intrusions [Ulbrich et al., 2009], mineral
prospecting [Fornazzari Neto and Ferreira, 2003; Carrino et al., 2007], study of impact craters
[Vasconcelos et al., 2012], environmental studies [ Concei¢do and Bonotto, 2003], oil exploration
[Saunders et al., 1987; Liining and Kolonic, 2003], study of hydrothermal alteration zones
[Biondi et al., 2001] and study of radioactive accidents impact [[AEA, 2003].

Although the limited penetration in the first dozens of centimeters, gamma-rays are the
most penetrating form of radiation available. The shallow reach makes the gamma-spectrometry
a reliable source of data for near-surface geophysical studies. Large scale structural analyses
[Nobrega et al. 2011; Ribeiro et al. 2013], mineral, oil and gas exploration [Saunders et al. 1987,
1993, 1994], astrophysical phenomena [Maziviero et al. 2013; Bose et al. 2013] and
environmental monitoring [Sanderson et al. 2004; Rachkovskij and Revunova 2011] are only a
few of the fields which the gamma-ray spectrometry has been successfully applied over the last
eighty years.

Several minerals of economic interest (such as Au, Zn, Ag, Cu) do not present a strong
geophysical signature, but are associated with specific geological processes (such as
hydrothermal activity) and thus techniques which can indicate the geological process can provide
an important vector for exploration. For example, Ostrovsky [1975] highlights the antagonism in
K and eTh behaviors under this activity, and this characteristic was then used by several authors
to propose different techniques to enhance the hydrothermal signature in radiometric data, such
as F parameter [ Gnojek and Prichystal, 1985]. The correct application of F factor techniques can
provide an important tool to optimize the exploration of hydrothermal deposits.

Filtering parameters (leveling and microleveling - Hogg, 1979; Paterson and Reeves,
1985; Urquhart, 1988; Minty, 1991] and gridding techniques (such as minimum curvature and
kriging - Briggs, 1974; Hansen, 1993] have a direct influence on the final map and can introduce
pseudo-anomalies not related with geological structures. Although the correct application of
these procedures is a make or break moment for gamma spectroscopy, it is not easy to find
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