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ABSTRACT

ZUNIGA, N. R. C. F. Nonhyperbolic multiparametric travel-time approximation
for converted-wave and OBN data. 2021. 277 p. Tese (Doutorado em Ciéncias) — Instituto
de Astronomia, Geofisica e Ciéncias Atmosféricas, Universidade de Sdo Paulo, Séo Paulo,
2021.

To obtain a more accurate stratigraphic model, it is important to perform a reliable
velocity analysis by fitting the calculated travel-time curve to the recorded one. The main
challenge to perform this step in the offshore seismic survey is the fact there are many factors
which present characteristics that generate nonhyperbolicity in travel-time events. For this
reason, it is necessary to use an approximation which is able to control the effects of the

nonhyperbolicity so that performing an efficient velocity analysis is possible.

The main proposition of this thesis was to develop a generalization of a nonhyperbolic
multiparametric travel-time approximation, which can control the nonhyperbolicity associated
to heterogeneity of layered media and long offsets, wave conversion, and difference of datum
between source and receiver. This work proposes a numerical study which aims to analyse the
complexity of the objective function, the quality and efficiency of the travel-time curve fitting
with different approximations, using different optimization algorithms and using the L1- and
L2-norm. Three of the five models studied in this thesis were elaborated from well logs data
of the Santos Basin and showed different characteristics making the proposed analysis more
complex. The other two models were adapted to test some limits of the nonhyperbolic
approximation (including the proposed one). Another important proposition was the
development of an automated picking technique to obtain the reflection events related to the
interface between the bottom of the salt and the top of the reservoir (target reflection). That

technique was also part of a set of tests to obtain information of phase variation.

It was possible to determine how complex each approximation is with the set of
information obtained by the residual function maps analysis. The quality of the fitting and the
efficiency of each approximation were also analysed. The optimization algorithm which

showed the best results was determined. The difference between the use of L1-norm and L2-



norm was also studied and it was determined which one is better to work for each kind of
inverse problem. With all these analyses, it was possible to identify which approximation
along with which optimization algorithm present the best results for each reflection event of
each model after the inversion. The automated picking technique proved to be able to obtain

the target reflection seismic events and information of phase variation.

Keywords: nonhyperbolic, multicomponent, converted wave, OBN, phase shift.



RESUMO

ZUNIGA, N. R. C. F. Aproximacéo ndo-hiperbdlica multiparamétrica de tempos
de transito para onda convertida e dado OBN. 2021. 277 p. Tese (Doutorado em Ciéncias)
— Instituto de Astronomia, Geofisica e Ciéncias Atmosféricas, Universidade de S&o Paulo,
Séo Paulo, 2021.

Para obter um modelo estratigrafico mais preciso, € importante realizar uma confiavel
analise de velocidades, ajustando a curva de tempos de transito calculada com a curva
observada. O principal desafio para realizar esta etapa em um levantamento sismico maritimo
¢ o fato de haver diversos fatores que apresentam caracteristicas que geram nao-
hiperbolicidade nos eventos de tempos de transito. Por esta razdo, € necessario usar uma
aproximacgdo que seja capaz de controlar os efeitos da ndo-hiperbolicidade para que seja

possivel realizar uma eficiente analise de velocidades.

A principal proposta dessa tese foi desenvolver uma generalizagdo de uma
aproximacdo nao-hiperbdélica multiparamétrica de tempos de transito, que possa controlar a
ndo-hiperbolicidade associada a heterogeneidade em meios estratificados e longos
afastamentos, conversdo de onda e diferenca de profundidade entre fonte e receptor. Um
estudo numérico foi proposto visando analisar a complexidade das fungdes objetivo, a
qualidade e eficiéncia do ajuste das curvas de tempos de transito com diferentes
aproximacdes, utilizando diferentes algoritmos de otimizacdo e utilizando normas L1 e L2.
Trés dos cinco modelos estudados nesta tese foram elaborados de perfis de pogos da Bacia de
Santos e mostraram diferentes caracteristicas, fazendo a analise proposta mais complexa. Os
outros dois modelos foram adaptados para testar alguns limites das aproximagfes nao-
hiperbdlicas (incluindo a aqui proposta). Outra proposta importante foi o desenvolvimento de
uma técnica de sele¢do automatica para obter as reflexdes relacionadas as interfaces entre a
base do sal e o topo do reservatdrio (reflexdo alvo). Esta técnica foi também parte de um
conjunto de testes para obter informacdes de variacao de fase.

Foi possivel determinar o qudo complexa cada aproximacdo é com 0 conjunto de

informagdes obtido pela analise de mapas residuais de funcdo objetivo. A qualidade de ajuste
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e a eficiéncia de cada aproximacdo também foram analisadas. Foram determinados o0s
algoritmos de otimizagdo que mostraram os melhores resultados. Foi estudada a diferenca
entre as normas L1 e L2, e foi determinada a melhor para se trabalhar com cada tipo de
problema inverso. Com todas essas analises, foi possivel identificar qual aproximacédo junto
de qual algoritmo de otimizacdo apresenta os melhores resultados para cada evento de
reflexdo de cada modelo depois da inversdo. A técnica de selecdo automética provou ser apta

para obter os eventos sismicos de reflexdo almejados e informacdes de variacdo de fase.

Palavras chave: ndo-hiperbdlico, multicomponente, onda convertida, OBN, mudanca de fase.
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Figure 170: The residual function map which demonstrates the complexity of the
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Figure 171: The residual function map which demonstrates the complexity of the
approximation proposed in this work of the PP reflection event with L1-norm. Red
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Figure 172: The residual function map which demonstrates the complexity of the
approximation proposed in this work of the PS reflection event with L1-norm. Red
dispersions represent the global minimum region, and the blue dispersions, the local minimum
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Figure 249: Relative error in travel-time between the observed curve and the calculated curve
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Figure 250: Relative error in travel-time between the observed curve and the calculated curve
with each approximation of the PS reflection event with L2-norm and TOMLAB/LGO
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Figure 260: Relative error in travel-time between the observed curve and the calculated curve
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1 INTRODUCTION

The seismic method aims at characterizing the geology of a region, frequently with the
objective of exploring hydrocarbon reservoirs. For this purpose, the method analyzes
recordings of elastic waves produced by artificial sources. The seismic waves that return to
the surface travel through the subsurface until they reach an interface, where they reflect and
refract due to the differences between their physical properties of the overlying and
underlying layers. Then, it is possible to extract information of the waves received, which

allows to construct an image of the subsurface.

To record the seismic waves, many receivers are placed on the surface at different
offsets from the source. There are two kinds of receivers: geophones, which are the receivers
able to detect the velocity of the ground movement; and hydrophones, which detect the
pressure variation in aquatic media. Different acquisition geometries are proposed to group
the receivers into arrays, which depend on the objectives of the seismic acquisition (Sheriff
and Geldart, 1995).

The seismic method is broadly used for the hydrocarbon exploration (Kearey, Brooks
and Hill, 2002). The reason is that the seismic method is capable of mapping interfaces and
other structures in the seismic sections, which allows constructing a stratigraphic and

geological model (Kearey, Brooks and Hill, 2002).

Though the seismic method was originally conceived for hydrocarbon exploration, it is
also used for mineral exploration, hydrogeology and environmental science. Even near-
surface seismic, in spite of many similarities, presents some different characteristics due to the
depth scale of hydrocarbon exploration. In particular, near-surface seismic involves low
multiplicity of the CMP (Common Mid-Point) survey, strong interferences of ground roll for

short offsets and changes in the waveform due to the supercritical reflections.

The compressional P-waves, recorded conventionally in seismic surveys, are obtained
with vertical geophones, unlike the multicomponent seismic, which is able to determine the
polarization of shear S-waves by the three component geophones, one vertical and two
orthogonally arrayed (Bokhonok, 2010; Zuniga, 2017).
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Multi-component seismic data have shown themselves extremely important for
improving the subsurface characterization, because they contain more complete information
about the elastic wave field than single-component data. The use of multicomponent seismic
provides many enhancements — such as the determination of Vp/Vs ratio to mapping the
lithological variation (Pickett, 1963, Stewart et al., 2002, Agudelo et al., 2013), the possibility
of obtaining the seismic sections even with a weak P reflectivity (Pickett, 1963, Stewart et al.,
2002, Agudelo et al., 2013), the possibility of a better resolution of the seismic image
(Stewart et al., 2003; Meier and Lee, 2009, Ursenbach et al., 2013), a better imaging of high
angle faults (Purnell, 1992, Stewart et al., 2003, Wang et al., 2014), a better imaging through
gas cloud (Granli el al. 1995), a better fluid discrimination (Qian et al., 2007), and monitoring
the variations of the 4D seismic (Spitz et al., 2000).

Multicomponent seismic has been proven to be able to overcome some of the
limitations of the conventional seismic (Kendall, 2006; Davis, 2001), and for this reason, it
was expected that multicomponent seismic would become the leading technique for both

onshore and offshore surveys (Davis, 2001; Hardage et al., 2011).

The steps to perform seismic processing have their complexity increased significantly
when the converted wave is also analysed (Bokhonok, 2010). This happens because the
incident wave presents a different velocity than the reflected wave, which results in an
asymmetric ray tracing. The asymmetric ray tracing, generated by the wave conversion,
produces a nonhyperbolic travel-time event. Moreover, Zuniga (2017) discussed about a
number of possible causes of the nonhyperbolicity in a seismic event.

Vertical heterogeneity, combined with long offsets between source and receiver, is
another factor able to generate a nonhyperbolic event, once there is a difference between the
interval velocity and the RMS (Root Mean Square) velocity, and this discrepancy increases
with larger offsets (Malovichko, 1978; Zuniga, 2017).

The use of OBN (Ocean Bottom Nodes) technology, even providing the PS event
information, produces a different kind of ray tracing asymmetry than the one produced by the
wave conversion (Zuniga, 2015 and 2017). In this case, the asymmetric seismic reflection
event is generated by the difference between the datum of the source (on the ocean surface)
and the receivers (on the seabed), which presents a difference between the distance traveled

by the incident and the reflected rays (Zuniga, 2017). However, using the OBN technology
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enables the acquisition of converted waves, which was impossible to obtain with the
conventional technology (streamer) on offshore surveys, once the S-waves cannot travel

through Newtonian fluids, as water.

The different causes of the nonhyperbolicity in a general form have been studied in
recent decades in different works (Malovichko, 1978; Blias, 1983 and 2009; Gonzalez-
Serrano and Claerbout, 1984; Muir and Dellinger, 1985; Castle, 1988 and 1994; Nowroozi,
1989; Slotboom, 1990; Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Sain
and Kaila, 1996; Li and Yuan, 1999, 2001 and 2002; Cheret et al., 2000; Causse et al., 2000;
Tsvankin and Grechka, 2000a,b; Fomel and Grechka, 2000 and 2001; Tsvankin, 2001;
Leiderman et al., 2003; Silva et al., 2003; Ursin and Stovas, 2006; Abedi and Riahi, 2016).
Most of these works aimed at developing travel-time approximations capable of describing
the nonhyperbolicity generated by one or more causes, so as to perform the velocity analysis

of a nonhyperbolic event.

Morover, there were some works intended to compare the different approximations for
different cases during the velocity analysis (Aleixo and Schleicher, 2010; Golikov and Stovas,
2012; Zuniga et al., 2015 and 2016; Zuniga, 2017).

Through the analysis of the developed approximations, with tests in real and
theoretical models, it is possible to conclude that there is no approximation capable of fitting
travel-times equally well for all models. However, some approximations presented better
results than the others, and also demonstrated to be much more general than the others
(Zuniga et al., 2015 and 2016; Zuniga, 2017).

Despite presenting good results, even the approximations which showed the best
results in previous works have difficulties to describe some of some nonhyperbolic effects.
For this reason, it is necessary to develop a more general approximation, capable of

describing the effects that the other approximations have problems to deal with.

Starting with the analysis of Malovichko (1978), it is possible to understand how
reaching an approximation can control the vertical heterogeneity. Blias’ (2009) approximation
is a strong complement to the vertical heterogeneity study. The studies from Tsvankin and
Thomsen (1994), Alkhalifah and Tsvankin (1995) and Thomsen (1999) help with the effects
of anisotropy. The Li and Yuan (2001) equation is a more general approximation and, for this

reason, it is an important manner to combine multiple parameters in order to describe different
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nonhyperbolic effects. The difference of datum between source and receiver can be
considered in the approximation proposed by Wang and Pham (2001).

A more general approximation must consider the effects of vertical heterogeneity for
large offsets, anisotropy, wave conversion and the difference of datum between source and

receiver.

After the development of an approximation capable of considering these causes of
nonhyperbolicity, it must be compared to the other approximations to observe in which

aspects the proposed one provides better results than the others.

The analysis must be performed by a comparison of curve fitting between the
observed and the calculated travel-time curves from the reflection events. Considering the fact
that the approximations have more than two parameters, it must be treated as an inverse
problem according to an optimization criterion. The comparison of optimization algorithms
must also be performed to determine the one which can minimize the processing time with a

good accuracy.

Not only the residual travel-time must be compared, but also the complexity of the
approximations, to understand the capacity of being unimodal or multimodal, which affects
the processing time. Another important analysis is the comparison between L1-norm and L2-
norm to find out if there is some decrease of the processing time or difficulty of reaching the

global minimum.

With all these analyses, it is possible to find if the proposed approximation can
describe the nonhyperbolic effects and present better results than the other approximations.

1.1 Objectives

To develop an approximation which considers the nonhyperbolicity associated with
vertical heterogeneity, anisotropy, wave conversion and difference of datum between source

and receiver.

To study the complexity of the objective function to understand its topology, then find

if it is unimodal or multimodal. This information is important to select which kind of

46



optimization algorithm must be used and if the data processing can take much processing
time.

To perform the velocity analysis comparing the proposed approximation with the
others to find if it can fit the calculated travel-time curve with the observed curve with a lower

residual travel-time.

To make this possible, an automated pick to obtain the travel-time curve of the target
interface is also proposed by using the spectral recomposition to find the specific wavelet of

each trace from the target event.

As a complementary study, the proposition of investigating the use of the spectral
recomposition also provides important information concerning the wave phase, which allows

for a deeper understanding of the critical and post critical reflection.
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2 FUNDAMENTALS AND NONHYPERBOLICITY

The nonhyperbolicity is a behaviour caused by wave behaviour and characteristics of
the medium. These factors act generating interferences in the conventional hyperbolic
behaviour of a travel-time curve. As the conventional seismic processing considers the events
hyperbolic, techniques which can overcome this difficulty must be used, once the travel-time

curves are not hyperbolic in many real situations.

In this chapter, some general fundamentals are presented aiming to understand the

different causes for nonhyperbolicity as it was shown by Zuniga (2017).

2.1 Seismic waves

The seismic waves are energy which propagates through the Earth and are originated
by earthquakes or artificial sources. The body waves travel through material media and can be
reflected or refracted in interfaces between layers or geological structures, depending on the
difference of the physical properties (Kearey, Brooks and Hill, 2002).

2.1.1 Compressional waves

The compressional waves, also called P-waves, travel in a longitudinal way, the same
direction of the particle motion and wave propagation. It travels by compressing and
distending the medium by which the wave propagates (Figure 1). Then, the P-wave travels
faster than the other kinds of body waves, and can travel through any kind of material

medium, whether solid, liquid or gas.
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Figure 1: Elastic deformation and particle motion associated with the passage of P-waves. (Kearey, Brooks and
Hill, 2002).
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2.1.2 Shear waves

The shear waves (S-waves) travel in a transversal form, with the direction of the
particle motion perpendicular to the wave propagation axis, shearing the medium by which
they travel (Figure 2). Then, the S-wave travels through the medium with an inferior velocity

than the P-wave, and it is not capable of traveling through liquid and gas.
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Figure 2: Elastic deformation and particle motion associated with the passage of S-waves. (Kearey, Brooks and
Hill, 2002).

2.2 Multicomponent seismic

Multicomponent seismic differs from the conventional seismic by the use of not only
P-wave record, but also Sv-waves (vertically polarized S-waves), and Sh-waves (horizontally
polarized S-waves), which can be separated from P-wave movement. Therefore, converted

waves events as PSv and SvP can be recorded.

The seismic processing for the multicomponent seismic data is much more
complicated, because five processing sequences are necessary (Figure 3), one for each kind of
reflection event (PP, SvSv, ShSh, PSv and SvP), once each one represents different frequency
and velocity contents. Besides, each kind of reflection event presents different magnitudes of

random and coherent noises.
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Figure 3: Representation of the recorded components in a Cartesian coordinate system (XYZ). The red star
represents the sources and the blue triangle represents the receivers. (Zuniga, 2017).

2.2.1 Wave conversion

When a P-wave reaches an interface between two layers, it can reflect or refract as an
S-wave (and vice versa), and then generate a converted wave. Hence, in a case of converted
wave event, the incident wave ray has a velocity and an angle different than the emergent
wave ray (Figure 4). This kind of situation results in a nonhyperbolic event due to the ray

traces asymmetry between the incident ray and the emergent ray.

(a) (b)

Source CMP Receptor Source CCP Receptor
h 4

Figure 4: (a) Wave reflection at the common mid-point (CMP); (b) PSv wave reflection at the common
conversion point (CCP). (Zuniga, 2017).
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2.3 OBN technology

The OBN (Ocean Bottom Nodes) technology uses the source on the surface and the
receivers on the bottom of the ocean (Figure 5). The conventional offshore acquisition
technology (Streamer) is different due to the fact it uses the source and the receiver on the
surface of the ocean, which makes acquiring multicomponent seismic data impossible, once
the S-waves cannot travel through the water. However, the using of OBN technology
generates a ray trace asymmetry concerning the difference of datum between source and
receiver resulting in a nonhyperbolic event.

Source CMP/CCP
Swface

Beceptor Beceptor
Ocean bottom P P

Beflector

Figure 5: PP and PS wave reflection events with the use of OBN technology. (Zuniga, 2017).

2.4 RMS velocity

The RMS (Root Mean Square) velocity is the quadratic mean of the interval velocities.
As, during the seismic processing, the RMS velocity is used, it is natural to have an error
associated to the difference between the RMS velocity and the set of interval velocities. This
error increases while the offset is increased (Figure 6), and then for offsets larger than the

reflector depth, the hyperbolic approach is not valid anymore.
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Figure 6: Schematization demonstrating how the RMS velocity differs from the set of interval velocities as the
offset is increased. Solid lines represent the interval velocities and the dotted lines represent the RMS velocity.
(Zuniga,2017).
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3 NONHYPERBOLIC EXPRESSIONS TO PERFORM VELOCITY
ANALYSIS

Nonhyperbolic travel-time events cannot be described by the conventional hyperbola
expression, and, for this reason, it is necessary to use approximations which are able to
describe the nonhyperbolicity. Most of them use one more parameter to describe the

nonhyperbolicity related to their specific origin.

In this work, a generalization of a nonhyperbolic multiparametric travel-time
approximation for converted-wave is proposed to consider the also the nonhyperbolic effect
generated by the difference of datum between source and receivers.

3.1 Proposed approximation

The main complication to process multicomponent seismic data concerns the ray
tracing asymmetry associated to the converted wave. However, we can describe this relation
between the incident P-wave ray and the reflected S-wave ray, with Snell’s law,

sinfp sin6s

Ve Vs

p, 1)

where Vpis the P-wave velocity, Vs is the S-wave velocity, 6, is the angle between the P-wave
incident ray and the normal component, 65 is the angle between the S-wave reflected
emergent ray and the normal component, and p is the ray parameter which is constant along

the ray for isotropic media. The ray parameter for this situation is described by

_dtc

Codx’ @)

p

where t. is the arrival time of the converted wave at an offset x.

The sum of the one-way oblique travel-time through the layer for the P-wave (tp) and
the one-way oblique travel-time through the layer for the S-wave (ts) results in the converted

wave arrival time, written as
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tc =tp + tg. 3)

The time which an incident ray of a P-wave takes to reach the reflector is described by

Z

t (4)

P= Vpcos@p’
where z is the reflector depth considering the source and the receiver at the same datum.

There is also the time that the reflected ray of an S-wave takes to reach the receiver

after the reflection, described as

VA

(5)

tg = —.
$ Vs cos O

The t. is therefore described as the sum of the Equations 4 and 5, and can be written

as
fe= ot —— 6
¢ VpcosOp  Vscosbs' )
Similar to Equation 6, the offset x is given by
x=thpsin9p+V5tSSin95=pVPth+pV52t5. (7)

For more complex cases, the approximations derived from the Taylor series must be
used (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Thomsen, 1999). The

expansion of the expression in t2 versus x?2 results in

2
X
t2 =t2 +—+ A x*+ -,
c Cco VCZZ 4 (8)

where A, is a non-independent term from the expansion. The A, is going to be later explained

in this chapter. V-, denotes the RMS stacking velocity of the converted wave.

To consider the converted wave travel-time for a zero offset (t.,), the relation must be

initially written as

tco = tpo T tso %)
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where tp, and tg, are, for a zero offset, the one-way travel-time of a P-wave and an S-wave,

respectively.

The Equation 9 can be expressed and rewritten as

tpo t t
teo = tpo + o = tpg (1 + ﬂ) : (10)
tpo tpo

Thomsen (1999) introduced a parameter as the ratio between tp, and tg,, written as

VA
Vo tpy _ tso
Vo=7=%=t—- (11)
S -— PO
tso
Substituting Equation 11 into Equation 10 gives
tco = tpo(1 + 7o) . (12)

For anisotropic cases, the short-spread moveout velocities are affected by the
anisotropy. Tsvankin and Thomsen (1994) proposed that this influence could be characterized
by the relation among the vertical P-wave and S-wave velocities and the independent

anisotropic parameters § and o. These relations are given by

Vi, = Vi (1 + 26) (13)
and

Vi = V(1 +0). (14)
Here, Vp, and Vs, are P-wave and S-wave RMS stacking velocities, respectively.

Tsvankin and Thomsen (1994) also determined that if there are many anisotropic

layers, the squared vertical velocities should be considered as the RMS vertical velocities.

The ratio between Vp, and Vg, was introduced by Thomsen (1999) as

VPZ
V2 Vey (15)
Thomsen (1999) introduced the ratio between the squared y, from the Equation 15 and

¥, from Equation 11 as
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Y5 (16)

Yerr = —-
erf Yo

Replacing Equation 15 into Equation 16 gives

Ve,
2 2 2
Y2 Ve, Vpy 1
Ty Iso T V&, (17)
tpo

For a multilayered media, Li and Yuan (2001 and 2003) described the one-way travel-

time of a P-wave and an S-wave for a zero offset as

n
tpo = Z Atpy; (18)
i=1
and
n
tso = z Atso; - (19)
i=1

Where Atp,; and Atgy; are the travel-times of each layer for, respectively, P-waves and S-

waves.
Introducing V2, and V&, respectively, into Equations 18 and 19 and reorganizing them
gives
1 n
Vg, = — ) Vi Atpy; (20)
tpo &
=1
and
1 n
Vs = _Z Vs, Atso; - (21)
lso &=
=1
Then, these relations with Equation 9 give
(22)

2 _ 2 2
teo Viéa = tpo Vpy + tso Vs,
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Replacing Equation 12 into Equation 22 gives

tpo(1 4 v0) Vi = tpo Viy + tso Vs .

Rearranging Equation 23 gives

V2 — tpo Viz + tpo Vo Vs
¢ tpo(1 +v0) ’

and therefore it results in

2 _ Ve, + Vo Ve
¢ (1+70)

Rearranging Equation 25 into

4+ YoV — Vi,

Vi, = ”
and replacing it into Equation 17 gives
Vé,
Yerf = )
T+ YoVé — Vb, v
Yo 0
and simplifying it results in
Vé,

Y = .
s A +yVé —Vh

The rearrangement of Equation 28 to evidence V52, is given by

Vé, = Yerrl(1+ YolVé — Vol
and distributing y,.rgives
Vi, = Yerr(1+ YoVé — Yerf Véz
and hence results in

Vlgz + Vesr Vlgz = Veff(l + )’O)chz )

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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and evidencing V2, gives
VAL +vVers) = Verrf(L+vo)VE,
which finally leads to

_ Vé Yerr(1+ 7o)

VE, =
(1 +Verr)
Rearranging Equation 17 into
VZ
VSZZ — P2 )
Yo Yerr

and replacing Equation 33 into Equation 34 gives

Vé Yerr (14 7o)
(L +Yerr)Vvo Vers

2
Vs =

and simplifying it results in

(32)

(33)

(34)

(35)

(36)

Introducing the anisotropic parameters n and ¢, proposed by Tsvankin and Thomsen
(1994) and used by Alkhalifah and Tsvankin (1995), which respectively control the

anisotropic behaviour in long-spread P-wave reaction moveout, and controls the anisotropic

behaviour in intermediate-spread S-wave moveout, there are

_ Ei - 61’ 261
=Tt 28)? V2,
-7
VPOi
and
_ O'i 1 N 261
Gi= (1 + 20;)2 Ve, |’
1-75
VPOi

(37)

(38)
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where o is described by
o; = v5(e—6), (39)

and where e quantifies the difference between the wave velocities along the symmetry axis
and perpendicular to the symmetry axis, and & describes the P-wave propagation for angles

close to the symmetry axis.

Alkhalifah and Tsvankin (1995) found that the effect of the term V&, /VZ,; is ignorable

for long-spread P-wave propagation, which reduces the Equation 37 to

=6
T (14 26)2

Ei—Si

40
1+ 26;° (40)

UF

Yuan (2002) observed that, for intermediate-spread S-wave propagation, the effect of

the term V&, /Vi,; can also be ignored for Equation 38, and after rearranging, it gives

¢ = ngf ni (41)

To generate the generalized equation, the conversion-point offset (x.) for a converted
wave ray which was converted at the bottom of the n-th layer (the layer above the reflection)

and was reflected emerging at offset x must be considered. It can be described by

3 cy x?
Xe =X CO+TC3XZ ) (42)

where Thomsen (1999) described that c; = ¢, /(1 — ¢,).

The coefficients ¢, and ¢, must be derived, and it starts with the consideration
proposed by Li and Yuan (2003) that x, = x.. Then there is the relation of the total offset ray
path described as

X = xp + X, (43)

where
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n n
Xp = Z Axp; = PE Up; Atp; (44)
i=1 i=1

and

n n
Xs = Z Axgi =p Z Ug; Atg; - (45)
im1 im1

The U; can be described as

where wy; is the horizontal component of the group velocity vector (Li and Yuan, 2001 and
2003).

As xp is an odd function of x, the Taylor expansion of the conversion point offset xp

at the total offset x can be described by

Xp = limz Co X2¥t1 = 1lim ) ¢y x2K*1, (47)
x-0 p—0
k=0 k=0
where
. _ 1 d2k+1xp
k27 2k + 1)! dx?k+1 (48)

For k = 0, c, can be described by
Co = lim =2 = lim —>—. (49)

From Equations 43, 44, 45 and 46,

dxpdp _ by (50)
dp dx by’

where

62



n n
d
b, = zl Up; Atp; + P%(Z Up; AtPi)
1= 1=

and

n n n n
d d
b, = Zl Up; Atp; + P%(Z Upi AtPi) + Z Us; Ats; + p% (21 Usi AtSi) ’
i= 1= 1= =

and where the differential terms are given by

d n n dUﬁi ; n ,
|2 z Up;i Atp; | = Pz Atp; +p Z Up; Atp;
dp \ 4 i dp :
i=1 =1 =1
and
n n n
d dUs; 5
P ZUSiAtSi ZPZ—MSH‘P ZUSiAti-
D\ < dp ;
i=1 i=1 i=1
Tsvankin and Thomsen (1994) adapted for VTI media and found
lim Up; = Vpai = Vpoi(1 + 28))
p—)
and

lim Ug; = V5o = Vioi(1 + 207) .
p—)

and they also found

i 80 U 28,

pl—%p dp = 0 dp? Vpoil€i — Oi 1_1752(”-
V3,
POi

and

(51)

(52)

(53)

(54)

(55)

(56)

(57)
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1dU. d?Uy; 26;

lim ——= = lim —" = —8vd&, ;| 1+ — |. (58)

p=0p dp  p-0 dp? 1 vsm

Vhoi

For k = 1, c, can be described by
1. d3xp
— Zim =22 (59)
“2 6;)1—% dx3 "’
where
d*xp d ( d (dxp dp) dp) dp (60)
dx3  dp\dp\dp dx/dx)dx’

which is the same as

d d
Gxp  Bi[3B2 4P gy Ba+ g5 0Bs)| = Bu2Bs +p By + p*Bo)

dx3 B? ’ (D

where the coefficients B, B,, B3, B, and Bs are
Bi=ep+pfptestpfs, (62)
B, =esgp—epgs, (63)
Bs = fsgr = fr s, (64)
By=fp+pgp+2fs+pgs (65)

and

Bs =es fp —ep gfs, (66)

and where the coefficients e, f and g are described as

n
e = Z Ui Ati , (67)
i=0
de
__t 2 68
dp de Z LAt +pZU At; , (68)
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and
_Y N2 : 69
9=g,= 2 Vi At+3p U? At+p U Aty (69)
i=0 i=0

From Equations 55 and 56 and for the limit of p — 0, it is possible to find that

n

lm(l) ep = Z Vpai Atpo; = Vi tpo (70)
P i=0
n
lirr(l) es = Z Vi Dtsoi = Vs tso (71)
P i=0
and
llH(l) fr= 11m fs=0. (72)
p—)
Also, that
. _ . Pi
%Jl_l’)r(l) gp = Ll_l}(l) Z Up; Atp; + 2lgl_r)r(l)z: dpzl Atp; (73)
=0 =0
and

lim g, = llm Z U Atg; + hrn Z (74)
p—0 d
and that they can also be respectively described as
n

lim gp = Z Vpai Atpoi + Z 8vpoi(€; —6) | 1+ Atp; (75)
p=0 - vsm

=0 i=0 1-

Vhoi

and
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n n

. _ 4 4 261
lim g5 = Vg Atso; + —8vgpi 0| 1+ 5 Atp; .
p—0 , . Vsoi
i=0 i=0 1 — ==
Vpoi

Replacing Equations 70 and 71 into Equation 76, the ¢, becomes

o = llimd3xP _ imesgp —€pJYs
27 6p-0 dx3  p-0 2(ep +eg)t

and c, can also be written as

where

and

] |

26;
01 = V& tso ) { Atpoy vfor| (1 +26)% +8(e; = 6) | 1+ ——5 ‘ ,

Vpoi
n
2 4 2 261’
Q2 = —Vpy tpg Z Atgo; vso; | (1 + 20;)* + 80; | 1+ 2 )
i=0 1+-3%
Vpoi

Q3 = Vina tpo + Vs tso

Qs =Vi tpo + Vi tsp .

Replacing the Equations from 36 to 39 into the extended Equation 49 gives

n n n
Co = Z Viai AtPot/(Z Viai Atpo; + Z Véri AtPOi) .
i=1 i=1 i=1

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)
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Replacing Equations 37 and 38 into the extended Equation 78 gives

n n
Cy = {(Z Véyi Atsot) Z Vs Atpo; (1 + 87;)
i=1 i=1

(Z VPZL AtPOl) [Z VSZL AtSOL (1 + 8(1)
X5 (Z Vi Atpo; + Z Vini Atsm)

Replacing Equations 9, 11 and from 15 to 22 into Equations 83 and 84, and

} (84)

-4

introducing the parameters

n
Neff = ar o4 Z Vi (1 + 8n)Atpo; — tpo Viy (85)
8tpo Vp, P
and
1 n
leff = =7 | tso Vo — z Vesi (1 — 80 Atgo; |, (86)
8tso Vs3 =
results in
Yerr
co = =T — 87
and
Yerr(1+v0)
: 5[Yo Yerr = 1+ 8(Ners Yo Yers + Gerr)] - (88)

2t20 V& vo(1 + Vesy)

Li and Yuan (2003) verified that ., which is the effective anisotropic parameter for

a P-wave in a multilayered media, is the same introduced by Alkhalifah and Tsvankin (1995).

They also verified that ¢ is the corresponding parameter for vertical S-wave in a layered

VTI media. Hence, 7. can be reduced to n and {, ¢ can be reduced to {, for a single-layered

VTI medium. Then, replacing Equations 40 and 41 into Equation 88, the latter is reduced to
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o = Yerr(1+ 7o)
2 = 3
2t V& vo(1 + vesr)

[VoVers — 1+ 8Verr n(vo +Vesr)]- (89)

In a case for a layered isotropic medium, Li and Yuan (2003) considered

n
1

Nerr = 8t VA z Vi Atpoi — tpo Vs (90)

Po Vp2 |

and
n
{ = tSO V54 - Z V4 'Atso‘ . (91)
eff 8ts, V542 2 - S2i i

Li and Yuan (2003) found that for this case, n.rr and {.r control respectively the
residual effects on P-waves and S-waves caused by layering. Therefore, to disregard these

effects, the Equation 89 can be reduced to

¢, = Yers(L+v0) (Yo Yerr — 1) (92)
.
2620 V& vo(1 + Yesr)

Working with the generalized equation proposed by Tsvankin and Thomsen (1994) for
tc, the converted wave moveout which suffered the conversion at the bottom of the n-th layer

and emerged at the offset x, it is found that

x? Ay x*

B S (93)
VE 1T 4 2

2 _ 42
tc = tco

To find the non-independent parameter A,, the development proposed by Tsvankin

and Thomsen (1994) and Li and Yuan (2003) must be followed. Initially considering

n
Ay =tV —

/ a3, Ve, (94)

L

n
(Hpi + o) Atpg; + Z(Hsl' + v5;) Atgo;
1 i=1

where
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26;
HPi = 817;1;2i (Ei - 61) 1+ : (95)

1
oz
and
Hg; = —8vd, 0: | 1+ 25"1 (96)
oz
Replacing Equations from 37 to 39 into Equations 95 and 96, it is possible to obtain
Hpi = 8Vpy ;i (7)
and
Hs; = —8vgy; {; - (98)

Introducing the definitions of Equation 85 and 86 respectively into Equations 97 and
98 results in

n
Z(Hpi + Vpyi)Atpg; = (1 - 877€ff)tP0 Vo (99)
i=1
and
n
Z(Hsl' + v ) Atso; = (1 — 8.7 )tso Vs . (100)
i=1

With the replacement of the Equations 99 and 100 into Equation 94, it is possible to
obtain

4 feVér = [(1 = 87ers )tro Vi + (1 = 8Gerr)tso Vsh] (101)
" 42, Vs |
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Replacing and rearranging the parameters Vi, Vp,, Vsa, teo, tpo and tgq into Equation
101 give

_ (Vo Yeff — 1)2 +8(1 + )’o)(Tleff Yo )’esz - (eff)

A, > (102)
480 Vs Yo ( 1+ VEff)
The non-independent coefficient As is given by
A, =.ff_fﬂtjf_, (103)
Vin V&
where Vpy, is the horizontal P-wave velocity.
Combining the parameters ¢ s, Yers, Yo and (o gives
Xers =MNefs Yo Verr = Seff - (104)
The Equation 104, for a single VTI layer, can be reduced to
X=n Vesz(Yo -1). (105)
Replacing Equation 105 into Equation 102 results in
4, = (Vo Yeff — 1)2 + 8Xerr(1+ 7o) . (106)

2
4t Ve, vo ( 1+ Veff)

Li and Yuan (2003) suggested an empirical relation between {. ¢ and y,r, given by

Vpn = Vpay/1+ 21, (107)

and where it can be approximated to

2
Wh=w21+ﬁréﬂé—. (108)
Veff()’o -1

The Equation 108 is a good approximation for layered media, even being considered

only for single VTI media. Thus, replacing Equations 106 and 108 into Equations 33 and 103
results in
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Ay Ve Verr(L+v0)|[(vo — Dyéer + 2Xers]

As = — . (109)
Verr (o — D(1 = Yo Yerr) = 2Verr Xerr(1 + ¥0)
For the case of a single VTI layer, it is possible to obtain an A,, described as
_ 2 2 2 1 2 _ 2
. — 1 - T] yeff(y() ) + ()/2 1) . (110)
tgo ng( 1 + ]/eff) Yo 4y0

However, for isotropic media, y.rr = yo and x.rr = 0. Thus, the coefficients 4, and As can

be reduced to

—(yo—1?
S (k- (111)
4tco Vez Vo
and
A, V?
‘= 4 Yc2 )/0. (112)
1-v,

As the approximations for isotropic cases showed good results in previous works, even
a simplified version is a reliable approximation to be considered with three parameters.
However, it does not consider a difference of datum between source and receiver, which leads
to the use of the relation proposed by Wang and Pham (2001). Initially, they consider that the
total travel-time is given by

t=1twp t s, (113)

where t,p is the one-way travel-time of the P-wave ray along the water depth, and the ¢, is
the travel-time of the P-wave from the bottom of the ocean to the reflection point and then
reflected as S-wave to the receptor. The reflection point as the bottom of the n-th layer is
considered, once Wang and Pham (2001) do not consider stratified media as their initial

premises.

Considering the same relations applied to the distances and using the Pythagoras

theorem, it is possible to find

xwp® = (twp Vwp)? = (x — x15)* + Z4p (114)
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where xy,p, is the distance that the P-wave ray traveled until reaching the bottom of the ocean,
Vwp 1s the velocity of the P-wave in the water, x; s is offset between the point at which the P-
wave reached the bottom of the ocean and the receiver which received the S-wave, and z,, is

the water depth.

Rearranging the Equation 114 gives

\/(x —x15)% + ziyp

(115)
VWD

twp =

The conventional static shift approach assumes x; s equal to x. However, considering a
straight ray path from the source until reaching the reflection point can be written as
X

—.
1+ _2WwD
teo Ve

(116)

XLs =

For a stratified medium and with the consideration of a different ray inclination in the

water, the relation becomes

X

Xjg = ———. 117
LS 1+ Zwp VWD ( )

2
teo Ve

Distinctly from what Wang and Pham (2001) proposed, it can be considered for ultra-

deep reservoirs as

Zwp Vi
x=x5(1+—2222). (118)
teo Ve

Replacing the Equation 118 into Equation 93 gives

x? Zuwn Vrn \
2 42 wbD Ywb
tC—tCO+V—2<1+W) v
c2 co Ve2 1+ As x2 (1 +ZWD VZVD
teo Ve

tco Ve,

4 4
(st

As the depth increases, the hyperbolic term suffers less influence by the shifting,

which allows to disregard it for the term x2/V2,, and reduce the Equation 119 to
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x? Ay x* Zwp Vwp\ "
tg =th+V—2+ P 2<1+W . (120)
@14 agn (1420000 o Viz
C2

Replacing Equations 111 and 112 into Equation 120 results in

Zwn Vi 4
2 —(yo — 1)? x* (1 + L‘g”’)
2 2 X teo Ve
tC = tCO + _2 + 2 2 2 27" (121)
€2 442 y4 o [1 Yo VE (e —1D*x (1 4 Zwp VWD) l
co“c2 4t50 V(?z Yo(1 —vo) tco chz
and after that, distributing the terms gives
2
X
té =téo +—
+
2 .4 zwp Vwp\* , (122)
—(]/0 - 1) X (1 +W)
c2
4t2, VA vo)vo VA (Vo — 1)2 x2 Zwp Vwp\°
4t2 V4 _( co Vc2Y0)Yo Vc2\Yo <1+ wD WD)
l coYca ¥o 4t20 Ve, vo(1 = vo) teo Vs
and then it can be rewritten as
Zwnp Vi 4
: 02t (14 Een i)
, 5 x teo Vo
tC = tCO + _2 + 2 2 27’ (123)
€2 |42 4 Yo — Yo Ve,(ro = Do — D x (1 + Zwp VWD)
covc270 (1 _ VO) tCO VC22
and then as
2 4 Zwp Vwp *
2 —(Yo— D x* |1+ — 12
) " X teo Vo
tC == tCO + _2 + > > 57 (124)
c2 4t2 V4 Yo + Yo ch(l —Yo) (Yo —1) x (1 + Zwbp VWD)
co “cz ¥o (1-v0) teo Vi
Simplifying Equation 124 gives
2 4 Zwp Vwp *
2 (Yo — D% x* |1 +=357
2 2 X teo Vs
tC = tCO + _2 + (125)

Zwn Vi 2]’
¢ l‘l'tgo Vé Yo +vo V&L —vp) x2 (1 + _?/D VVZVD> l
co V¢
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and rearranging it gives

4
2 ~(ro = D2 ¢ (1422 2]
= otz RERRTIR (126)
2 v, Vg, l4t62~0 VE + (1 —y,) x2 (1 4 Zwp Igm) l
teo Vez
Replacing and introducing the generic parameters result in
Zwp Yo \?
2 —(y—1)2x* <1+LI£VD)
= |+ = (127)
0 VZ

2 )

yV? I4t§ V2+(1—y)x2(1+w> l
toV

an approximation with five parameters, three parameters to be recovered and two a priori

parameters zy,, and Vi p.

3.2 Other approximations

Each nonhyperbolic approximation used in this thesis has idiosyncratic characteristics,
and an additional parameter which aims to perform a better fit considering different premises.
These approximations were already previously tested for different models and problems by
Zuniga (2015, 2017 and 2018) and Zuniga et al. (2015, 2016, 2017, 2018, 2019a, 2019b and
2019c).

Eight approximations were chosen for this study. The first one is the hyperbola

equation, proposed by Dix (1955).
t= tg + x_’ (128)
v

where x is the vector of offsets between source and receiver, t, is the zero-offset travel-time

and v is the RMS (Root Mean Square) velocity.

However, this approximation is treated in this thesis only for a comparison effect, due
to the fact it is insufficient for the strong nonhyperbolic conditions studied, once it considers

only hyperbolic events.
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The shifted hyperbola (Malovichko, 1978) has the proposition of controlling the effect
of large offsets in inhomogeneous media using the S parameter. This equation was also
studied and derived by Castle (1988 and 1994) and de Bazelaire (1988), and more recently
tested for VTI media (Zuniga et al., 2015), for strong heterogeneity (Zuniga, 2015), and for
offshore OBN data (Zuniga, 2017; Zuniga et al., 2015, 2016, 2017, 2018 and 2019a). The
shifted hyperbola can be described as

1 Sx?
tztg(l——)-i-g t§+v—, (129)

where S is the heterogeneity parameter which depends on p, and u, by the relation

S = ”_‘2‘_ (130)
125

Here, u; (j = 2,4) is the j-th velocity momentum described by

n n
yj=:E:tkv;//:E:tk, (131)
k=1 k=1

where vy, is the interval velocity of the k-th layer and t;, is the travel-time of the k-th layer.

The next approximation was proposed by Slotboom (1990) to perform the velocity
analysis for a nonhyperbolic behaviour from conversion of a P-wave to a vertical S-wave.
Once it has no additional parameter to control the nonhyperbolicity in a better way, it brought
a less accurate set of results in previous works (Zuniga, 2015; Zuniga et al., 2019), even

though it shows a low processing time (Zuniga, 2017).

2
t=%+ b x* (132)

However, this approximation is presented just to explain the evolution of the
development concerning the nonhyperbolic approximations, once it was tested in previews
works and has never shown significant results for complex models (Zuniga et al., 2015 and
2016; Zuniga, 2017).

The following approximation is a very popular equation, broadly used in the
petroleum industry. It was proposed by Alkhalifah and Tsvankin (1995) to deal with
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nonhyperbolicity originated in VTI (Vertical Transversal Isotropy) media by anisotropy. This
approximation was strongly tested by Zuniga (2015 and 2017).

2 4
b= (24— 2 , (133)
v?2  v2[tiv? + (14 2n)x?]

where 7 parameter quantifies the nonhyperbolicity of the event. This parameter represents a
determined anisotropy and it is function of the Thomsen anisotropic parameters (Thomsen,
1986) described as

(134)

where ¢ quantifies the difference between the wave velocities along the symmetry axis and
perpendicular to the symmetry axis, and § represents the propagation of P-wave for angles

close to the symmetry axis.

Similar to the shifted hyperbola, the next equation proposes to use the heterogeneity
parameter, but in this case, it aims to use the fractional condition of the approximation to
obtain a more accurate result of the velocity, once it is more related to the S parameter.
However, for this approximation, the authors (Ursin and Stovas, 2006) proposed that the S
parameter is expressed in a quasi-acoustic case as a function of the Thomsen anisotropic
parameters (Thomsen, 1986). For this reason, it showed a better result concerning the velocity
recovery, even when, on the other hand, the topology of the function is sensitive to the model
variation (Zuniga et al., 2018, 2019b and 2019c).

2 S_l 4
t= |t + ( ) (135)

v2 (§—1)x2
4p* (tg + TW)

The same problem was observed for the approximation proposed by Blias (2009),
which also uses the S parameter of heterogeneity, in a similar way to the equations proposed
by Malovichko (1978) and by Ursin and Stovas (2006). To develop this approximation, the
author performed several numerical tests related to the walkway vertical seismic profile
(VSP). In this case, the approximation was very sensitive to the additional parameter and
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velocity (Zuniga et al., 2018, 2019b and 2019c), however, it had a very complex topology and
was strongly dependent on the model.

1 1-vS—-1 1 1+vS5—-1
“zjtg*Tx“Ejtg*v—zxz (4%

Different from the other approximations, the next one, proposed by Muir and
Dellinger (1985), considers the anellipticity parameter (f) to deal with the nonhyperbolicity
generated by the variation of the wavefront when it varies from a spherical shape and tends to
the elliptical shape (Fomel and Grechka (2000). The problem observed before for this
equation is that the global and local minimum regions are too similar, which makes the search
for the global minimum even harder (Zuniga, 2017).

¢ :th PR A G DL (137)

v?  v2(v2td + fix?)

Different from all previous approximations in this work, the one proposed by Li and
Yuan (2001), aims to consider the CP (Conversion Point) to control the effects of a
nonhyperbolicity associated to the wave conversion. For this, the y parameter is used as the

nonhyperbolic parameter.

2 _ 1)yt
O w2 yv? 4t2v2 + (y — 1)x2

where y is the ratio between the squared P-wave stacking velocity vp, and the squared

converted wave stacking velocity v.,, written as

y =2 Yerrd¥vo) (139)
Vca (1 + )’eff)

Here, y.s¢ is the relation between y, and y,, given by

eff )’o’

(140)
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where y, is the ratio between the stacking P-wave and stacking S-wave, and y, is the ratio

between P-wave velocity and S-wave velocity, which travel along the normal component.

The parameter from Li and Yuan (2001) approximation was tested by Yuan (2002) for a
maximum offset-depth ratio of 1.5 (x/z=1.5) and it brought results that stimulated several
studies for the different applications of this approximation (Zuniga, 2015, 2017 and 2018;
Zuniga et al., 2017, 2019a and 2019b). Yuan (2002) found, for this equation, the proper value
of x/z is 2.7 in a heterogeneous isotropic media, however, it was found that, for OBN
condition, the equation works very well for higher values of x/z (Zuniga, 2017; Zuniga et al.,
2019a).
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4 MODELLING COMPLEX STRUCTURES AND GEOMETRIES

There are several different geological scenarios intended to model the offshore
structures, and for this reason it is necessary to understand these different conditions. This
work proposes to test five different models; three of them are ultra-deep carbonate reservoirs
sealed by salt (pre salt), which were partially tested by Zuniga (2017), while the two new
tested models are shallower reservoirs composed by sandstone and sealed by shale (post salt).
The analysed data are both PP and PS reflection events from the interface between the salt
base and the top of the reservoir. The three carbonate reservoirs were modelled using well log
data from the pre salt from the Santos Basin, which provided the modelling performed by
using stratigraphic and lithological information. For the two sandstone reservoirs, the
modelling was performed to create fictional reservoirs inspired by post salt reservoirs from
the Campos Basin. These two fictional models were generated aiming to test the
nonhyperbolic multiparametric approximations in conditions which make them work on their
thresholds, once this condition provides a RMS velocity much different than the real velocity,
which was tested by Zuniga et al. (2018, 2019b and 2019c).

It is essential to use the P-wave velocity (Vp), S-wave velocity (Vs) and the ratio
between the P-wave velocity and S-wave velocity (Vp/Vs) as the main elastic parameters to
perform the tests proposed in this work, since it is necessary to recover the value of velocity
by identifying the travel-time of the waves. For the two shallower models, the values of these
parameters were based on the references which provide a set of physical parameters for
different lithology obtained empirically for different conditions of depth and pressure (e.g.
Han, 1986; Lucet, 1989; Geertsma, 1961; Jizba, 1991; Strandenes, 1991; Blangy, 1992;
Cadoret, 1993; Yale and Jameison, 1994; Mavko et al., 2009).

Zuniga (2017) generated the complete velocity profile as a function of depth using the
MATLAB Toolbox for ray tracing modelling proposed by Margrave (2000 and 2003). It was
performed by using the ray tracing method aiming to define how each reflection event travels
through the layers. However, once it is necessary to model structures with geometry of
acquisition where there is a difference of datum between source and receiver, it is also
necessary to use a more complex tool, as the software of 2D wave field modelling by finite
differences proposed by Thorbecke and Draganov (2012).
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4.1 Automated picking using spectral recomposition

To perform the velocity analysis using the proposed method, it is necessary to extract
the travel-time curve from the target reflection event (the PP and PS reflection events from the
interface between the bottom of the salt and the top of the reservoir). For this reason, a
technique to perform an automated pick of the travel-times from the seismogram trace by

trace, even in the presence of significant random noise, is proposed.

As the pre salt from the Santos Basin presents a very thick salt layer above the
reservoir, there is a significant difference concerning the depth — and therefore concerning
the arrival time — between the strongest reflections related to the interfaces above the
reservoir and the one related to the target interface, the interface between bottom of the salt
and the top of the reservoir. For this reason, it is easier to perform the travel-time pick for the

target interface when it has less interference from other reflections of other interfaces.

So, a technique capable of performing the inversion of the frequency spectrum for
each trace aiming to recover the information of amplitude and frequency using the spectral
recomposition approach (Tomasso et al., 2010; Cai et al., 2013) is proposed. It was performed
before in different situations aiming only to recover this kind of information to obtain a better
geological characterization (Tomasso et al., 2010; Cai et al., 2013). However, until now, it
has not being applied to compare the wavelets and specifically to find a peak frequency of a

random noise or of a signal.

The seismic spectrum can be described as a sum of different Ricker components
(Tomasso et al., 2010), described as

n

d(F) = ) e, (mo f) . (141)

i=1

The d(f) is the spectrum of a seismic trace, f is the frequency, and a, and m, are,
respectively, the amplitude and the peak frequency of the i-th Ricker spectrum component,

given by

R(f)=a¢(m,f)=a%€xp< 4 ) (142)

m2
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With this description of the wavelet, it is possible to perform an inversion fitting the
calculated frequency spectrum to the observed one of all wavelets found in a trace. Certainly,
the frequency spectrum is found after a Fourier transform of the wavelets is performed in the
analysed trace. The optimization algorithms used are going to be better described in

subsequent chapters.

So, for the first trace, the curve fitting of the calculated spectrum to all spectra of the
frequencies found this way is performed; and then, with each pair of information of frequency
and amplitude, they can be compared to each other and to the frequency used by the seismic
source. With an automated comparison of the values of peak frequency and amplitude, and
cross correlation among each wavelet, it is possible to find which of those spectra are related
to the random noise or to the signal of the reflection. Once there is only one target signal
related to the travel-time of the reflection on this trace and several related to the random noise,
the spectrum of the signal must be different from all the other random noise spectra. That is
the main reason to consider this technigue to obtain only reflections well separated in time;

otherwise, reflections too close to each other may be ill-picked.

After finding the wavelet of the signal for the first trace, the technique does the same
for the next trace; however, it considers some constraints to perform a more accurate picking.
The first of the constraints is to consider the arrival time of a trace always higher than the
previous one, once the next arrival must take more time to be received than the previous one.
The second constraint is to compare the difference between the arrival time of the analysed
trace and the arrival time of the previous trace. It is necessary to restrict the time of the target
wavelet between the two arrival times around it, once it cannot be lower than the previous
arrival time and higher than the next one. This difference limit can be set according to
different kinds of models due to the fact some models can present a lithology which can
generate a more horizontalized reflection event and therefore a narrower time window
between the previous and the next trace. The third constraint is to compare the peak frequency
and the amplitude and cross correlate the spectrum of the signal of the trace analysed to the
previous trace. This constraint aims to compare the spectrum of the signal of the event in a
trace to the previous one, once they must be very similar to each other and different from the
random noise spectrum. All difference limits can be set according to the different
characteristics of the medium, seismic source or kind of propagation (PP, ShSh, SvSv, SP or
PS), once each of these characteristics can present different sets of arrival times and wavelets,
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and therefore it is possible to restrict a specific area of the seismogram aiming to find the
target information more quickly.

The seismogram may also be muted on the parts in which the reflection event is not
expected to appear. It is important to help the algorithm to find less wavelet to fit, decreasing
the possibility of picking a wrong spectrum and increasing the processing time. However, it
should be applied only in regions of the seismogram which certainly does not affect the target
reflections; otherwise it could mute important information of the target reflection.

After performing the technique for each trace and obtaining each frequency spectrum
associated to the target reflection signal, it is possible, after performing the inverse Fourier
transform for each trace, to find the arrival time of each wavelet of the reflection signal. With
each arrival time of the reflection event, there is the travel-time curve of the same reflection
event. That procedure was performed for each PP and PS reflection event of the interface
between the bottom of the sealing layer and the top of the reservoir for each model, and the
two reflection events (PP and PS) of each of the five models could be found (9.1 Appendix
A). Then, it is possible to perform the velocity analysis by fitting the calculated travel-time

curve to the observed one (extracted with this technique).

4.1.1 PVO analysis to find critical reflection using spectral recomposition

It is possible to observe that, in cases where there is a critical reflection, the phase
begins to significantly vary after the critical reflection. For this reason, it is proposed to apply
the same technique used to perform the automated picking, but this time to extract the events
with phase shifting. Once the travel-time curve is extracted, the same idea can be applied in a
different way. So, another technique is proposed in this thesis, and this technique is based on
performing the inversion of the spectrum of a trace using the Ricker spectrum as the
calculated curve, which provides the information of the amplitude and peak frequency.
However, in a condition where there is a phase shift, the Ricker wavelet is gradually distorted
into its Hilbert transform, which is very similar to a semi-Gaussian wavelet, due to the fact of
both being odd functions. Once the phase is getting shifted, the observed wavelet is becoming
more disparate from the Ricker wavelet and becoming closer to a semi-Gaussian wavelet,
which results in a higher global minimum value. It happens because the error of the calculated

curve represented by the mathematical model of the Ricker spectrum starts to be fitted to a
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wavelet closer to a semi-Gaussian wavelet. It happens because the Ricker wavelet spectrum is
being used to calculate the spectrum of the wavelets in the traces. For this reason, it was
expected that the trace with the highest global minimum value was related to the critical
angle. This is very interesting for the PVO (Phase Variation with Offset) analysis, once it is
possible to find the critical angle (CA) data driven and then find some elastic properties like
Poison ratio when it is made for PP and SS reflection events of a layer. It can also be useful to
calculate the velocity ratios for each studied layer and then, after finding the velocity of the
first one, calculate the velocity of each underlying layer. In this work, it was tested for SvSv
reflection events with different critical angles, aiming to find the critical angles of these
events data driven. Four models were proposed to be tested: the first model with 37 degrees of
critical angle; the second model is the same as the first one except that a semi-Gaussian
wavelet was used rather than a Ricker wavelet; the third model presents 30 degrees of critical

angle; and the fourth model with 44 degrees of critical angle.

In this study, it was possible to observe that the value of the global minimum error (the
error between the calculated spectrum and the observed frequency spectrum) along each trace
varies as it gets closer to the critical angle. The global minimum value increases abruptly as it
reaches the CA and then abruptly decreases for the angles higher than the CA. It happens for
the three models with different CA (37, 30 and 44 degrees). However, for the second model
tested, the CA is related to the first lowest minimum value. It happens due to the Ricker
wavelet used to calculate the spectrum being very similar to the first wavelets of the models 1,
3 and 4, and when the wavelets start to become different from the Ricker spectrum they stop
to fit as well. For the model 2, the opposite happens, once the first wavelets are semi-
Gaussian and are being calculated with a Ricker wavelet spectrum, so the error starts to
decrease when the wavelets start to become more similar to the calculated Ricker wavelets.
So, for any value of CA (with a Ricker wavelet), it may be explained by the fact that the phase
variation gets more disparate from the Ricker wavelet shape as it gets closer to the critical
point, and therefore, the error increases as the Ricker wavelet is considered for calculating the
spectrum. So, in the CA, the worst fitting is observed. Therefore, the peak of maximum error
is associated to the critical angle, and for higher and lower angles, it starts to decrease and

show a better fitting.

The same is observed to the peak frequency value and the amplitude value (9.2
Appendix B - Figure 284 and 285). But this time, for all the four models. The amplitude and
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peak frequency have their highest values observed in the critical angle. However, for the
amplitude, it is observed that, after the critical angle, its values decrease gradually, while for
the peak frequency, the values decrease abruptly and then increase again, getting slightly
more stable. For the frequency, the increase of the value can be possibly explained by
interference from the refracted event which starts to get separated from the reflected one. For
the Ricker wavelet, it was also tested for higher and lower critical angles. It showed the same
behaviour of the global minimum, amplitude and frequency variations with the incident angle.
When the same study was performed for a semi-Gaussian wavelet (Gaussian’s first derivative
or Ricker’s integral), the value of the first minimum peak right before the maximum peak
showed to be related to the critical angle rather than the maximum peak. However, the
amplitude and the frequency showed the same behaviour shown by the Ricker wavelet with

the same critical angle.

Additionally, it is important to prove and show how the reflection and the phase
behave around the CA. For each trace (consequently each angle), the theoretical instant phase
shows the angle when the phase changes for each model (9.2 Appendix B - Figure 286).
Another way to show this is to theoretically calculate the reflection (RC) and the transmission
(TC) coefficients using the Zoeppritz equations, once the RC reaches its maximum and
becomes stable immediately after the critical angle, and the TC reaches its maximum value
exactly in the CA (9.2 Appendix B - Figure 287, 288 and 289).

4.2 Models to be studied

The first three models are conventionally found in the pre salt environment, a very
thick salt sealing layer above a carbonate reservoir layer. However, the other two models
tested are sandstone reservoirs sealed by shale, so a broader range of results can be found. For
all the following models, the depth of the source is 5 metres, the number of receivers is 100,
and the minimum offset between source and receiver, in the same way as the offset between
receivers, is 150 metres. The five models used in this work present only vertical velocity

variation, and not varying horizontally.
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4.2.1 Model 1

For the first model, it is possible to observe a very conventional structure from the pre

salt from Santos Basin, with more than 2000 metres of water depth and around 2000 metres of

salt sealing the reservoir. This salt structure is composed by one anhydrite (CaSOs) layer

between two halite (NaCl) layers. The anhydrite layer has higher density and higher P-wave

and S-wave propagation than the other two salt layers (Figure 7). The receivers are coupled at

2157 metres of depth on the bottom of the ocean and the salt layer begins at a depth of 2761

metres and ends at the depth of 5172 metres, where the top of the carbonate reservoir is. The

ray tracings of this model with the described geometry of acquisition are presented by the

Figures 8 and 9, while the travel-time curves are represented by the Figures 10 and 11.
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Figure 7: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 1.
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Figure 8: Ray tracing schematization of the PP reflection event from Model 1.
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Figure 9: Ray tracing schematization of the PS reflection event from Model 1.
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Figure 10: Travel-time curve of the PP reflection event from Model 1.
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Figure 11: Travel-time curve of the PS reflection event from Model 1.
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4.2.2 Model 2

The second model is also from pre salt from Santos Basin, and, as the first model, it
presents a salt structure thicker than 2000 metres; however, in this case, the salt layer starts to
appear at a depth of 3139 metres and ends at a depth of 5005 metres, where the top of the
carbonate reservoir is. The main difference of this model in comparison to the previous one is
that, in this case, in the salt structure, despite being composed by two halite layers and an
anhydrite layer in between them, the anhydrite layer is much thicker (more than 1000 metres),
while the halite layers are thinner (Figure 12). The receivers are coupled at a depth of 2101
metres on the water bottom as it can be seen in the Figures 13 and 14. The reflection events of

PP and PS waves are shown in Figures 15 and 16.
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Figure 12: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 2.
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Figure 13: Ray tracing schematization of the PP reflection event from Model 2.
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Figure 15: Travel-time curve of the PP reflection event from Model 2.
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Figure 16: Travel-time curve of the PS reflection event from Model 2.
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4.2.3 Model 3

Differently from the models shown previously, the third model presents a very

peculiar characteristic concerning the salt structure: The halite layer is in between two

anhydrite layers. The salt structure also presents a thinner total thickness, something around

1500 metres, starting at 3590 metres of depth and the bottom of the salt reaching the top of

the carbonate reservoir at 4949 metres of depth (Figure 17). This kind of velocity variation,

with a velocity abnormally lower than it should be, found between two very dense salt

structures, can cause a strong distortion on the ray tracing (Figures 18 and 19) and therefore

generates a stronger nonhyperbolicity on the reflection events (Figures 20 and 21). The

receivers are coupled at the ocean bottom, where they are at a depth of 2159 metres.
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Figure 17: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 3.
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Figure 18: Ray tracing schematization of the PP reflection event from Model 3.
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Figure 19: Ray tracing schematization of the PS reflection event from Model 3.
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Figure 20: Travel-time curve of the PP reflection event from Model 3.
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Figure 21: Travel-time curve of the PS reflection event from Model 3.
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4.2.4 Model 4

The Model 4 is a conventional sandstone reservoir sealed by shale. This structure has a
water depth of 2050 metres and a shallower reservoir in comparison to the other models. The
depth of the top of the sealing layer is 3220 metres and the top of the reservoir is at a depth of
3524 metres (Figure 22). For this case, the same application of OBN technology is
considered, so the receivers are coupled at the ocean bottom, as it is shown by Figures 23 and
24. Despite not being a complex stratigraphy or lithology, this model represents a challenge
concerning the RMS velocity, once it has a very high offset-depth relation, which can also

increase the nonhyperbolicity of the reflection events (Figures 25 and 26).
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Figure 22: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 4.
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e 24: Ray tracing schematization of the PS reflection event from Model 4.
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Figure 25: Travel-time curve of the PP reflection event from Model 4.
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Figure 26: Travel-time curve of the PS reflection event from Model 4.
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4.2.5 Model 5

Concerning the sealing structure, the Model 5 is very similar to the Model 4. However,
the fifth model has a shallower reservoir than the others, with a water depth of 1052 metres,
the sealing shale layer starting at a depth of 2357 metres and the total depth of the reservoir is
2594 metres (Figure 27). Similarly to the Model 5, it is possible to observe the not so frequent
variation of the inclination concerning the ray tracing (Figures 28 and 29). However, the fact
that the target layer is so shallow for this geometry of acquisition, the RMS velocity can

distort the reflection events even more (Figures 30 and 31).
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Figure 27: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 5.
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Figure 28: Ray tracing schematization of the PP reflection event from Model 5.
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Figure 29: Ray tracing schematization of the PS reflection event from Model 5.
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Figure 30: Travel-time curve of the PP reflection event from Model 5.
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Figure 31: Travel-time curve of the PS reflection event from Model 5
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5 COMPLEXITY ANALYSIS OF THE OBJECIVE FUNCTION

5.1 Inverse problem

The mathematical inverse problem consists in obtaining, or calculating, the unknown
cause of a known effect (Duarte, 2010; Aster, Borches and Thurber, 2012). It is necessary to
know the precedence of the data to apply the inversion problem in an effective way, once the

quality of the model analysis is dependent on the a priori information (Tarantola, 2005).

In this work, the proposed inversion is based on the curve fit between the calculated
curve with each approximation and the observed travel-time curve in the seismic record. The
travel-times are the effect and, from them, it is possible to determine the cause — in other
words, it is possible to reach the information necessary to characterize the model.

5.2 Direct problem

The direct problem consists in mathematically calculating the effect of a known cause.
It is related to the inverse problems, since it allows calculating an ensemble of effects
generated by different models intended to represent a phenomenon, or perturbations in a
single model (Duarte, 2010; Aster, Borches and Thurber, 2012).

It is proposed that the direct problem starts from the obtainment of the travel-times
from a reflection PP or PS event making use of the ray tracing methods. The modelling was
performed for multi-layered media, with large offsets between source and receivers, in
offshore and ultra-depth water (depths larger than 1500 metres), and using the OBN
technology to obtain converted waves.

5.3 Optimization algorithms

The main objective of the optimization is to reach the best option, in a set of options of
input values to be used in the procedure, to find an extremum of a specified function (Horst,

Pardalos and Thoai, 2000). In this work, it is aimed to reach the minimum point.
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The processes of optimization usually generate an improvement in each interaction
until reaching the convergence in the minimum point of the function. However, several
models can present more than one solution, due to its nonlinearity. This is common when an
inversion problem is being solved, a situation in which the focus is to obtain the best possible

approximation of the parameters to be estimated.

In this work, five known optimization algorithms from the literature were selected.
Three of them (IMFL, FMINSEARCH and SID-PSM) are local search optimization
algorithms, which were used with the multi-start procedure aiming to run the optimization
algorithm several times, once they could not efficiently find a global minimum region among
more than one minimum region, and, therefore, not providing a reliable solution. With the
multi-start procedure, the optimization restarts its interactions from different random initial
points. When the problem is unimodal, it can be easily applied without the multi-start
procedure. For the multimodal problems, an alternative for the multi-start procedure is to use
global search optimization algorithms, as MCS and TOMLAB/LGO.

The optimization algorithm, along with the norm, is the responsible to find the
minimum region by minimizing the error between the calculated and the observed data. So,
the calculation of the data with the approximation used for the initial parameters related to a
random starting point on the topography of the function is performed, and then the difference
between the calculated curve and the observed curve using one of the two norms is compared.
If the minimum value found in the interaction is higher than the value defined initially as the
minimum acceptable value, the optimization goes on for a next interaction until it reaches a
minimum value lower than the value set as a minimum acceptable value. Therefore, the last
interaction finishes and the last comparison between the observed and calculated data is
performed. So, it provides the lowest error for a specific approximation with a specific
algorithm minimized with a specific norm, as presented by Zuniga (2019a and 2019b).

5.3.1 IMFIL

IMFIL (Implicit Filtering) is an implementation, in MATLAB, of the implicit filtering
algorithm, a local search algorithm with a deterministic sampling method for bound-

constrained optimization. This kind of algorithm is useful to minimize functions which are
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non-smooth, noisy, random or discontinuous (Winslow et al., 1991; Gilmore and Kelley
1995; Kelley, 2011).

5.3.2 FMINSEARCH

FMINSEARCH (Find Minimum Search) is a MATLAB implementation of the
Nelder-Mead algorithm (Nelder and Mead, 1965), which is based on the simplex method
(Spendley et al., 1962; Lagarias et al., 1998). This local search algorithm is focused in the use
of a simplex, a polytope of n+1 vertices in n dimensions with edges of the same size, and it is
useful for unconstrained optimization problems (Coxeter, 1948; Lewis, Torczon and Trosset,
2000).

5.3.3 SID-PSM

SID-PSM (Simplex Derivative - Pattern Search Method) is a local search algorithm
implemented in MATLAB, based on a pattern search method with the pool step guided by
simplex derivatives (Custodio and Vicente, 2007 and 2008). This kind of algorithm was
created to solve unconstrained and constrained problems, and each search step is based on the

optimization of quadratic surrogate models (Custodio et al., 2010).

As the optimization methods shown previously are local search algorithms, it is
necessary to use the multi-start procedure which is based on performing several inversions
starting from different sets of initial points (Kan and Timmer, 1978a and 1978b; Telraky and
Sotirov, 2010 and 2013).

5.3.4 MCS

MCS (Multilevel Coordinate Search) is a MATLAB implementation of the algorithm
for global optimization of bound-constrained problems (Neumaier et al., 2005). This
algorithm is based on performing the partition of the search space into boxes with an
evaluated base point. The global local search is balanced by a multilevel approach, according
to which box is assigned a level s that is an increasing function of the number of times that the

box was processed (Huyer and Neumaier, 1999).
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5.3.5 TOMLAB/LGO

The TOMLAB/LGO is a TOMLAB solver implemented in MATLAB. This kind of
solver provides access to several derivative-free optimization solvers (Jones, 2001;
Holmstrom et al., 2007a and 2007b; Holmstrém et al., 2008). The LGO (Local and Global
Optimization) solver used is a combination of global and local nonlinear solvers that
implements a combination of Lipschitzian-based branch-and-bound with deterministic and
stochastic local search (Pintér, 1995; Pintér et al., 2006).

Other optimization algorithms were considered; however, for the similarities in the
operations and in the results concerning the selected methods, some algorithms, such as
SNOBFIT (Huyer and Neumaier, 2008), PSWARM (Vaz and Vicente, 2007), CMA (Hansen,
2006; Hansen, 2016), among others (Rios and Sahinidis, 2013), were not used in this work.

5.4 L1- and L2-norm

A norm is, concerning the mathematics, the total length or the total size of,
respectively, a set of vectors in a vector space or a set of matrices in a matrix space. A norm is
essentially a function, for example, which assigns a strictly positive length or size to each
vector in a vector space; however, it is not valid to the zero vector, due to the fact that, in this
case, the length is assigned as zero. So, the higher the norm is, the bigger the value in the
vector or in the matrix is (Treves, 1967). The norm is also known as Euclidian distance,

among other names.

When the L2-norm is used, also known as least squares, it is based on the
minimization of the sum of the square of the differences between the observed value and the
estimated value. On the other hand, the L1-norm is known as least absolute deviation or least
absolute errors. For this case, the minimization is performed minimizing the sum of the
absolute differences between the observed value and the estimated value (Khaleelulla, 1982).

The difference between the L1- and L2-norm is represented in Figure 32.
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Figure 32: Two-dimensional example showing the sparseness of a solution when using the L1-norm and the L2-
norm.

The L2-norm is the most popular one, and it is used in many fields of physics and
engineering. Even though the solution of least squares method is easy to compute, it may be
not the best solution, due to its smooth nature. For this reason, in many cases, it is hard to find
a solution which is single and, at the same time, the best one for the problem. However, the
L1-norm, in some cases, can provide a better set of results due to its not-smooth nature, once
the unicity is stronger in this kind of problem. Even though the L1-norm minimization has a
similar form to the L2-norm, it is much harder to solve. Due to the absence of a smooth
behaviour in this kind of function, the search for the best solution must be performed directly

by seeking the means of the computed solutions (Bourbaki, 1987).

Even though it is difficult to find a solution with the L1-norm, the increase of the
computational processing power in the last decades allowed overcoming these limitations.
Then, it is possible to use it as direct search, and also to divide the space in parts of L1-norm

and other parts of L2-norm.

In this case of comparing the optimization algorithms, it was necessary to select
derivative free algorithms, once algorithms which use derivatives would not work for L1-
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norm. For this reason, it was necessary to select optimization algorithms which are able to be
used for both norms, as it was presented by Zuniga et al. (2019b and 2019c).

5.5 Objective function analysis

The objective function is the function which defines the quality of a solution in

relation to its variables.

The method used to make the estimation of the parameters of the travel-time
approximations possible is based on the implementation of an algorithm aiming to optimize
the fit for the reflection PP and PS events.

The least squares method is the standard approach to approximate solutions. This
method consists in reaching the best fit for a set of data aiming to minimize the sums of the
squares of the differences between the estimated values and the observed values (Stigler,
1981). In this work, the least squares method was used to perform the inversion to measure
how close the estimated travel-times and the observed travel-times are. With the minimum
value of the function, there is the optimum value of the function, once the sum of the squares

of the differences between the observed and estimated travel-times is the least possible.

With this, it is necessary to select the search algorithm; however, it is essential to
analyse how complex the problem is. This analysis can be performed by observing the
residual function maps (Larsen, 1999, Kurt, 2007). It is appropriated to use this kind of
analysis for problems with two variables. However, in the cases with three or more variables,
it is not possible to have reliable information concerning the complexity of the function. It is
associated to the fact that the construction of the map has two parameters as variables
(velocity and the nonhyperbolicity parameter), and the third parameter (the time for zero
offset) is fixed in its value associated to the minimum value, the closest value from the correct
one. To overcome these limitations, a method which consists in analysing the dispersions of
the results obtained from several inversions was adopted. The results obtained are plotted in a
hyperplane, where the vertical and horizontal axes are the related parameters, and the third
dimension is the representation of the minimum values of the objective function (Bokhonok,
2010; Zuniga, 2015).
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5.5.1 Model 1

It was possible to observe that the Malovichko (1978) approximation showed a
homogeneous topological structure concerning the objective function. Also, it showed to be a
unimodal approximation in studied cases (Figures 33 and 34). Generically, all approximations
showed a PS converted wave event with the structure displaced along the values of the axes,
and this displacement is associated to the difference between the parameters of the
conventional event and the converted event. Even with the L1-norm, the variation in the
structure was subtle. However, the difference between the maximum region and the global
minimum region became more abrupt and with a narrower global minimum region (Figures
35 and 36).

The approximation proposed by Alkhalifah and Tsvankin (1995) showed the same
kind of variation between the PP and PS events, and for the L2- and L1-norm (Figures 37, 38,
39 and 40).

Ursin and Stovas (2006) approximation for this model showed to have a unimodal
statistical distribution, in the same way as previous works with similar models. This
approximation showed the same variations between the Figures 41 and 42, and Figures 43 and
44,

The Figures 45 and 46 showed the same variation between a PP and a PS reflection
event, which can also be seen concerning the variations between the L2- and L1-norm
(Figures 47 and 48). Further, this approximation (Blias, 2009), which presented the same

characteristics of the Ursin and Stovas (2006) one, also showed to be unimodal for this model.

The approximation developed by Muir and Dellinger (1985) presented a multimodal
behaviour. However, the variation between the PP and PS reflection events was different than
the others (Figures 49 and 50). Its variation was not only concerning the displacement of the
objective function structure, but there was also a variation of the structural position between
the global and local minimum region. This factor is due to the local and global minimum
values being so close to each other. The variation concerning the L2- and L1-norm (Figures
51 and 52) presented the same kind of variation as the other approximations.

The approximation proposed by Li and Yuan (2001) showed a multimodal behaviour
and only a structural variation between the PP and PS events (Figures 53 and 54), and the

same variation between L2- and L1-norm as the other approximations (Figures 55 and 56).
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The approximation proposed in this work showed the same characteristics and
variations as the approximation proposed by Li and Yuan (2001), due to the fact that the
development of this approximation shares the same origin conserving some characteristics
and behaviours (Figures 57, 58, 59 and 60). The main difference is concerning the topological
structure of the objective function which presented an additional parameter as a less sensible
variable than what is shown by Li and Yuan (2001) approximation.
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Figure 33: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 34: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 35: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 36: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 37: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispers
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Figure 38: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 39: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 40: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 41: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 42: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 43: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 44: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 45: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.

VPS m's

*\ o0

Additional parameter

N L
Bieior, “'ﬁ*a]
i

4

Figure 46: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 47: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 48: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 49: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 50: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.

117



3900

3400

33200

3200

3Hoo

2000

VPP m/s

2900

2800

2700

2600

B
2500 : I" i | | |I|IIIIII!II|I|I|
-1 0 f 2 3 4 5
Additional parameter

Figure 51: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 52: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 53: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 54: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 55: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 56: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 57: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 58: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 59: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.

3000

2900

2800

2700

2600

2000

VPS m's

2400

2300

2200

2100

2000
-1

Additional parameter

Figure 60: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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5.5.2 Model 2

With a model which is slightly more complex, subtle differences in the topological
structure could be observed. However, the same variations could be seen for the Malovichko
(1978) approximation concerning the distribution of the contour lines of the structure between
the PP and PS events (Figures 61 and 62). And in the Figures 63 and 64, it is possible to
observe, again, the gradient of the curves becoming stronger between the L2- and L1-norm.

Furthermore, the approximation showed to be, once again, a unimodal approximation.

The Alkhalifah and Tsvankin (1995) approximation showed to be unimodal and
presented the same characteristics as before (Figures 65, 66, 67 and 68), except for the subtle

differences in the topological structure.

The approximation proposed by Ursin and Stovas (2006) again showed the same

characteristics and variations as the previous model (Figures 69, 70, 71 and 72).

For the approximation proposed by Blias (2009), the same kind of variations as the
previous approximation could be observed (Figures 73, 74, 75 and 76).

The Muir and Dellinger (1985) approximation showed the same curious variation it
presented previously concerning the PP and PS event (Figures 77 and 78). It also presented

the same multimodal behaviour and variation between the norms (Figures 79 and 80).

The approximation presented by Li and Yuan (2001) showed all the same

characteristics and variations it showed in Model 1 (Figures 81, 82, 83 and 84).

The proposed approximation showed the same complex characteristics and behaviours
concerning the topological structure of the objective function, and also presented similar

variations as before (Figures 85, 86, 87 and 88).
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Figure 61: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 62: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 63: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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The residual function map which demonstrates the complexity of the Malovichko (1978)

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 65: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 66: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 67: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 68: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 69: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 70: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 71: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.

2000

2900

2800

2700

2600

2000

VPS m's

2400

2300

2200

2100

2000
-1

Additional parameter

Figure 72: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 73: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue
dispersions, the local minimum regions.
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Figure 74: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue
dispersions, the local minimum regions.
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Figure 75: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 76: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 77: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 78: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 79: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 80: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 81: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 82: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 83: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 84: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 85: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 86: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 87: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 88: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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5.5.3 Model 3

As it was shown, the third model has a different characteristic than the other Santos
Basin structures, so it is significantly more complex than the previous models. However,
nothing except for the subtle variation in the topological structure changed for the Malovichko
(1978) approximation. The variations and characteristics that are similar to what already was
observed in the Models 1 and 2 can be seen in the Figures 89, 90, 91 and 92.

The approximation proposed by Alkhalifah and Tsvankin (1995) behaved, concerning
its variations, in a similar manner as before (Figures 93, 94, 95 and 96).

As it was shown before, the approximation proposed by Ursin and Stovas (2006)
presented to be unimodal again, and with the same variations as in the previous models
(Figures 97, 98, 99 and 100).

In a similar way as the Ursin and Stovas (2006) approximation, the one proposed by
Blias (2009) showed the same kinds of variations (Figures 101, 102, 103 and 104).

Even with a model with a significantly different characteristic, the approximation
proposed by Muir and Dellinger (1985) showed the same unusual characteristic concerning
the variation between the conventional event to the converted event (Figures 105 and 106).
Moreover, it showed the same multimodal behaviour as before and the same variations

concerning the L2- and L1-norm (Figures 107 and 108).

The approximation proposed by Li and Yuan (2001), showed the same behaviour as
before, being multimodal and with the already seen variations between PP to PS events and
between L2- and L1-norm (Figures 109, 110, 111 and 112).

The proposed approximation in this work showed only subtle variations concerning
the topology of the objective function. Concerning the other characteristics and variations, it
behaved in a similar manner (Figure 113, 114, 115 and 116).
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Figure 89: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 90: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 91: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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The residual function map which demonstrates the complexity of the Malovichko (1978)

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.

140



3900

3400

33200

3200

2000

VPP m/s

2900

2800

s7ool.. .}

2600

2300

Additional parameter

Figure 93: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 94: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 95: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 96: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 97: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 98: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 99: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 100: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 101: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 102: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 103: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 104: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 105: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 106: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 107: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 108: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 109: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 110: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 111: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 112: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 113: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 114: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 115: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 116: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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5.5.4 Model 4

The fourth model is shallower than the three first ones, both in the water depth as in
the rock structure where there is no complex structural characteristic. However, the
acquisition geometry was maintained to force the limits of each approximation. Thus, even
with a simple and shallow reservoir, the large maximum offset between source and receiver
brings a significant complexity to this model. For this reason, it was possible to observe that
the Malovichko (1978) approximation showed a more visible variation in the topological
structure of the objective function. A more substantial variation was observed between the PP
and PS events (Figures 117 and 118). However, the approximation was still unimodal and
showed the same kinds of variations concerning the L2- and L1-norm (Figures 119 and 120).

The same strong variation could be seen between the PP and PS events of the
Alkhalifah and Tsvankin (1995) approximation (Figures 121 and 122). However, the
approximation maintained the unimodal behaviour and the variations between the L2- and L1-
norm (Figures 123 and 124).

In this case, the approximation proposed by Ursin and Stovas (2006) showed to be
multimodal, differently than the three previous models. Furthermore, it showed a strong
variation between the PP and PS events (Figures 125 and 126), similarly to the other previous
approximations for this model. However, the most significant variation was concerning the
one between the L2- and L1-norm, where the approximation changed its behaviour from

multimodal to unimodal (Figures 127 and 128).

The same magnitude and kind of variations could be seen in this model for the
approximation proposed by Blias (2009), which also had an important variation between the
two norms (Figures 129, 130, 131 and 132).

The approximation proposed by Muir and Dellinger (1985) showed to be multimodal
again. However, the variation between the two events, PP and PS, concerning the exchange in
the global and local minimum region did not exist (Figures 133 and 134). Even with this
difference, the variation concerning the norms was still similar to what was previously seen

for this approximation (Figures 135 and 136).

The Li and Yuan (2001) approximation showed to be, again, multimodal, and showed,

as the other approximations for this model, a visible variation between the PP and PS events
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(Figures 137 and 138). Concerning the variation between the norms, the same kind of

variation seen before, for this approximation, is observed (Figures 139 and 140).

The proposed approximation showed similar variations and behaviour as the one
proposed by Li and Yuan (2001). However, in this model, the topology of the objective
function was strongly different than the topology in the first three models (Figures 141, 142,
143 and 144). And as consequence of this strong difference, the topological structure was

narrower concerning the additional parameter.
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Figure 117: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 118: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 119: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 120: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 121: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 122: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 123: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 124: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 125: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 126: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 127: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 128: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 129: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 130: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 131: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 132: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 133: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 134: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 135: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 136: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 137: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 138: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 139: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 140: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 141: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 142: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 143: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 144: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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5.5.5 Model 5

The Model 5 is a structure which is even shallower than the fourth model, which
would make it a simpler model to work. However, as the previous one, the fifth model still
uses the geometry of acquisition of the first three models, which increases the complexity,
once the nonhyperbolicity due to the RMS velocity relations gets stronger. For this reason, the
approximation proposed by Malovichko (1978) still showed a significant variation between
the PP and PS events (Figures 145 and 146). It also showed the abrupt variation between the
topology of the L2-norm and the L1-norm (Figures 147 and 148).

The same kind of variations could be observed for the Alkhalifah and Tsvankin (1995)
approximation in this model (Figures 149, 150, 151 and 152).

The approximation proposed by Ursin and Stovas (2006) showed similar variations as
the Model 4 between the PP and PS events (Figures 153 and 154), and also concerning the
two norms (Figures 155 and 156).

The same could be observed in the approximation proposed by Blias (2006), which
showed a significant variation between the two reflection events (Figures 157 and 158) and
stopped being multimodal after the application of the L1-norm rather than the L2- (Figures
159 and 160).

Similarly to the Model 4, the Muir and Dellinger (1985) approximation showed only
variations concerning the topology between the PP and PS events (Figures 161 and 162) and
not concerning the exchange of the local and global minimum regions. Concerning the
variation between the norms, it showed a similar behaviour to what was observed in the fourth
model (Figures 163 and 164).

The Li and Yuan (2001) approximation showed the same kind of variations as in the
previous model (Figures 165, 166, 167 and 168).

It can be observed that, in the Figures 169, 170, 171 and 172, the proposed
approximation showed a similar more complex topological structure concerning the objective
function, and also showed the same kind of variations and behaviour as it showed in the
Model 4.
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Figure 145: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 146: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 147: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 148: The residual function map which demonstrates the complexity of the Malovichko (1978)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,

and the blue dispersions, the local minimum regions.
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Figure 149: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 150: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 151: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 152: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin
(1995) approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum
region, and the blue dispersions, the local minimum regions.
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Figure 153: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 154: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 155: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 156: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 157: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue
dispersions, the local minimum regions.
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Figure 158: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue
dispersions, the local minimum regions.
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Figure 159: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 160: The residual function map which demonstrates the complexity of the Blias (2009) approximation of
the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue

dispersions, the local minimum regions.
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Figure 161: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 162: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 163: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 164: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 165: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 166: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 167: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 168: The residual function map which demonstrates the complexity of the Li and Yuan (2001)
approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region,
and the blue dispersions, the local minimum regions.
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Figure 169: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 170: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 171: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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Figure 172: The residual function map which demonstrates the complexity of the approximation proposed in this
work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the
blue dispersions, the local minimum regions.
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6 RESIDUAL TRAVEL-TIME CURVE ANALYSIS

After the calculated curve is fitted to the observed one, there still is a residual error
between the two curves. This error is associated to the objective function (minimum value),
and it represents a solution related to the set of parameters that is the best characterization for
the analysed model with the referent approximation. Therefore, the calculated curve, with the
parameters related to the global minimum, represents the best possible solution among the set

of inversions.

It is commonly difficult to compare two or more approximations in travel-time curves
scale due to the quality of the obtained fit. For this reason, it is necessary to perform the
residual analysis between the observed curve and the calculated one (the absolute difference
between them). Thus, it is possible to observe the difference in the quality of the fit in a
smaller scale. Then, it is possible to observe more accurately the regions in which the curve
fits the best.

The most accurate curve is the one closer to the zero all along the offset; however,
some approximations showed a better fitting in different regions of the curve. For this reason,
it is necessary to consider not only the absolute quality of the fitting all along the offset, but
also prioritize a better fitting closer to the time for zero offset, once it is one of the three
parameters to be recovered during the inversion. So, an approximation that shows a very good
fitting all along the curve, but not a good fitting closer to time for zero offset is not considered
a good fitting, once the value of this parameter would be recovered with a higher error.

6.1 Model 1

At first, it is important to remember that the hyperbola equation (Dix, 1955) is being
presented only for a comparison effect and due to its simplicity; the hyperbolic approach
presented the worst results in all reflections events, for both norms, and all models. It was
possible to observe the low quality of the curve fitting in the Figures 173 and 174, where for

PS events it reached an error of almost 10% with the simplest optimization algorithm.

Another important confirmation concerns the results of the approximation proposed by

Alkhalifah and Tsvankin (1995), which showed the worst results among the nonhyperbolic
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multiparametric travel-time approximations for all scenarios tested. It was possible to observe
that, in the beginning of the curve, it was less accurate than the other nonhyperbolic
approximations (Figure 176), even for the PS reflection event — when this approximation
was showing a better fitting at the beginning of the curve —, its accuracy had a very low

quality for the rest of the curve (Figure 175).

A similar condition was observed in the behaviour of the Muir and Dellinger (1985)
approximation, which presented the second worst set of results among the approximations
with three parameters for all models, norms and reflection events tested in this work, and it
was easily observable that, even with a better optimization algorithm, its accuracy was not so
good (Figures 177 and 178). The use of the L1-norm increases the accuracy, but not enough

to make this approximation reliable for this case (Figures 179 and 180).

In each wave reflection event, each norm and each model, the approximation proposed
by Li and Yuan (2001) presented the second best set of results of all equations tested in this
work. For the most accurate among the local search optimization algorithms tested, this
approximation presented a very good fitting for both reflection events (Figures 181 and 182),

and for the L1-norm, and it showed a 10% decrease of the residual error (183 and 184).

The approximation proposed in this work presented to be the most accurate for all
scenarios tested. This approximation for this model with the MCS optimization algorithm
showed the highest efficiency, once it showed to be very accurate, and also a good processing
time (Figures 185 and 186). For the L1-norm, it showed an even better accuracy (Figures 187
and 188).

In the Model 1, the Ursin and Stovas (2006) approximation showed the third best set
of results for every PP wave reflection event of each optimization algorithm, while the Blias
(2009) and Malovichko (1978) approximations presented, respectively, the fourth and the fifth
best results, as it can be more clearly observed in Figure 189. In the case of the converted
wave events for all optimization algorithms, the Figure 190 showed more easily that the Blias
(2009) approximation presented the third best results; Malovichko (1978), the fourth best
results; and Ursin and Stovas (2006), the fifth best results. Figures 191 and 192 showed the

same variation, but with an increase of accuracy of around 10%.
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Figure 173: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 174: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 175: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 176: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 177: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 178: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 180: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 181: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 182: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 183: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 184: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 185: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and MCS optimization algorithm.
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Figure 186: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and MCS optimization algorithm.
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Figure 187: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and MCS optimization algorithm.
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Figure 188: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and MCS optimization algorithm.
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Figure 189: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 190: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 191: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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Figure 192: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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6.2 Model 2

For the PP event with L2-norm using the IMFL optimization algorithm (Figure 193),
the approximation of Ursin and Stovas (2006) showed the third best result, while the one
proposed by Blias (2009) showed the fourth best. The one proposed by Malovichko showed
the fifth best result for this case. It was possible to observe that, for the PS event, Blias (2009)
showed the third best result; Malovichko (1978), the fourth best; and Ursin and Stovas (2006),
the fifth best (Figure 194). However, applying the L1-norm (Figures 195 and 196), the result
showed to be very similar, with the exception of the decrease of the error in around 10%.

With the FMINSEARCH algorithm, the PP event using L2-norm (Figure 197) showed
the third best result for the Ursin and Stovas (2006) approximation, the fourth best for Blias
(2009) and the fifth best for Malovichko (1978). For the converted event (Figure 198), it was
observed that the third best result was for Blias (2009), the fourth best for Malovichko (1978)
and the fifth best for Ursin and Stovas (2006). These results presented an increase of around
1% concerning the accuracy when the L1- norm was used (Figures 199 and 200).

The SID-PSM optimization algorithm along with the L2-norm presented that, for the
conventional reflection event, Ursin and Stovas (2006) had the third, Blias (2009) the fourth,
and Malovichko (1978) the fifth best results (Figure 201). For the PS reflection event (Figure
202), Blias (2009) showed to be the third, Malovichko (1978) the fourth and Ursin and Stovas
(2006) the fifth best. For the L1-norm, an increase of the quality in the result could be
observed (Figures 203 and 204), but still showing the same sequence of results.

The MCS algorithm along with the L2-norm used for the inversion of the PP event
showed the Ursin and Stovas (2006) approximation as the third best result; Blias (2009), the
fourth; and Malovichko (1978), the fifth (Figure 205). For the converted wave event, Blias
(2009) showed to be the third, Malovichko (1978) the fourth and Ursin and Stovas (2006) the
fifth best result (Figure 206). When the L1- norm is used for this case (Figures 207 and 208) a

similar result can be observed, however, with a small increase of accuracy.

For the TOMLAB/LGO algorithm, when the L2-norm was used for the PP event
(Figure 209), Ursin and Stovas (2006) showed the third best result; Blias (2009), the fourth;
and Malovichko (1978), the fifth. For the PS event, Blias (2009) showed the third best result;
Malovichko (1978), the fourth; and Ursin and Stovas (2006), the fifth (Figure 210). The same

small increase as before could be observed for the L1-norm (Figures 211 and 212).
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Figure 193: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 194: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 195: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 196: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 197: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm.

Relative traveltime error (%)

[~—-Dix (1955)

Malovichko (1978)
—e-Alkhalifah and Tsvankin (1995)

| ——Ursin and Stovas (2006)

Blias (2009)

-~ Muir and Dellinger (1985)

——Li and Yuan (2001)

|—+—Proposed approximation

5000

Offset (m)

10000

Figure 198: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 199: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 200: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 201: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 202: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 203: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 204: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 205: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and MCS optimization algorithm.

1.5

Relative traveltime error (%)

[~—-Dix (1955)

Malovichko (1978)
—e-Alkhalifah and Tsvankin (1995)

| ——Ursin and Stovas (2006)

Blias (2009)

-~ Muir and Dellinger (1985)

——Li and Yuan (2001)

|—+—Proposed approximation

5000

Offset (m)

10000

Figure 206: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and MCS optimization algorithm.
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Figure 207: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and MCS optimization algorithm.
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Figure 208: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and MCS optimization algorithm.
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Figure 209: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 210: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 211: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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Figure 212: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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6.3 Model 3

In the third model, using the IMFL optimization algorithm with the L2-norm for PP
event resulted in Ursin and Stovas (2006) showing the third best result; Malovichko (1978),
the fourth; and Blias (2009), the fifth (Figure 213). For the PS reflection event, Malovichko
(1978) showed the third best result; Blias (2009), the fourth; and Ursin and Stovas (2006), the
fifth (Figure 214). Similarly to the previous two models, the L1-norm presented a better result
than the L2-norm (Figures 215 and 216).

The FMINSEARCH optimization algorithm presented Ursin and Stovas (2006) as the
third, Malovichko (1978) as the fourth and Blias (2009) as the fifth best results using L2-norm
for the conventional event (Figure 217). For the converted wave event, Malovichko (1978)
showed to be the third most accurate, while Blias (2009) showed to be the fourth and Ursin
and Stovas (2006) were the fifth (Figure 218). The use of the L1-norm resulted in less than
10% of increase for the accuracy (Figures 219 and 220).

As shown in Figure 221, the SID-PSM optimization algorithm along with the use of
L2-norm showed Ursin and Stovas (2006) as the third best result; Malovichko (1978), the
fourth; and Blias (2009), the fifth for the PP event. On the other hand, for the PS event,
Malovichko (1978) presented the third best result; Blias (2009), the fourth; and Ursin and
Stovas (2006), the fifth (Figure 222). As it was seen before for the other two local search
algorithms with the use of L1-norm, it was possible to observe a similar increase concerning

the accuracy (Figures 223 and 224).

Using the global search optimization algorithm MCS with the L2-norm for the PP
event, it was found that the approximation proposed by Ursin and Stovas (2006) had the third,
Malovichko (1978) the fourth, and Blias (2009) the fifth best results (Figure 225). For the
converted wave event, Malovichko (1978) showed the third best result, Blias (2009) showed
the fourth and Ursin and Stovas (2006) were the fifth (Figure 226). Using the L1-norm

resulted in a decrease of the error of around 1% (Figure 227 and 228).

The TOMLAB/LGO optimization algorithm presented the same sequence of results
shown by the MCS algorithm for the PP event using the L2-norm (Figure 229) and for PS
using the same norm (Figure 230). Using the L1-norm (Figures 231 and 232) also showed a

decrease of the error of around 10%.
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Figure 213: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 214: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 215: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 216: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 217: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 218: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 219: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 220: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 221: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 222: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 223: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 224: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 225: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and MCS optimization algorithm.
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Figure 226: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and MCS optimization algorithm.
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Figure 227: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and MCS optimization algorithm.
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Figure 228: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and MCS optimization algorithm.
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Figure 229: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 230: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 231: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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Figure 232: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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6.4 Model 4

In Model 4, the proposed approximation and the one proposed by Li and Yuan (2001)
presented respectively the best and the second best results, even when this model did not
represent a carbonate reservoir from pre salt, which showed that both approximations are very
stable for controlling the nonhyperbolicity in different kinds of problems. However, all
approximations showed much more difficulty, once the RMS velocity was much stronger than
the previous models. This problem can be clearly observed in Figures 233 and 234, where the
Dix (1955) approximation presented the highest error of around 25%, while other
approximations showed 5 to 10% of maximum error. Even though both approximations
showed the best set of results, the error was the second highest presented in this work,
reaching more than 2%. For the L1-norm, all the approximations showed an average increase

of the accuracy of more than 10% (Figures 235 and 236).

For the FMINSEARCH algorithm, the error decreased significantly, but there was also
a variation among Blias (2009), Malovichko (1978) and Ursin and Stovas (2006) concerning
the quality of the fitting. With the L2-norm for PP event (Figure 237), Blias (2009) showed
the third best curve fitting; Malovichko (1978), the fourth; and Ursin and Stovas (2006), the
fifth. For the PS event (Figure 238), Malovichko (1978) showed the third, Ursin and Stovas
(2006) the fourth and Blias (2009) the fifth best result. In Figures 239 and 240, it is possible

to observe that the use of L1-norm provides an increase higher than 10%.

Using the SID-PSM algorithm with L2-norm for the PP event, the approximation
proposed by Blias (2009) showed the third best result, while Malovichko (1978) showed the
fourth best, and Ursin and Stovas (2006) the fifth best one (Figure 241). For the converted
event, Malovichko (1978) showed the third best result; Ursin and Stovas (2006), the fourth;
and Blias (2009), the fifth (Figure 242). It could be observed that the decrease of the error was
of around 10% when the L1-norm was used (Figures 243 and 244).

Using the MCS, the results increased significantly for this case, showing a lower than
2% error for the nonhyperbolic equations using the L2-norm for PP (Figure 245) and for PS
(Figure 246). Using the L1-norm resulted again in a decrease of 10% of the error (Figures 247
and 248). The same condition could be observed for the PP event using the TOMLAB/LGO
algorithm (Figure 249) and for PS (Figure 250). For the L1-norm, the same increase and the
same sequence of results for other algorithms were observed (Figures 251 and 252).
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Figure 233: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 234: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 235: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 236: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 237: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 238: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 239: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 240: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 241: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 242: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 243: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 244: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 245: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and MCS optimization algorithm.
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Figure 246: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and MCS optimization algorithm.
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Figure 247: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and MCS optimization algorithm.
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Figure 248: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and MCS optimization algorithm.
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Figure 249: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 250: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 251: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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Figure 252: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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6.5 Model 5

For the last model tested in this work, it was possible to observe the highest error
among all the five models; and for the IMFL algorithm (Figure 253), it was clear that the
converted event (Figure 254) presented as the hardest condition to perform the curve fitting,
showing almost 30% of residual of maximum error. Even when it decreases the error in
around 10%, the use of the L1-norm showed a high error for the conventional event (Figure

255), and a maximum error higher than 25% (Figure 256).

Using the FMINSEARCH along with the L2-norm, the average error decreased from
5% to 3% for the PP event (Figure 257) and from 5.5% to 2.5% for the converted-wave event
(Figure 258). The L1-norm helped to decrease the error in between 0.5% (Figure 259) and
0.2% (Figure 260) for the PP and PS events, respectively.

The last local search optimization algorithm, the SID-PSM, showed a good result for
L2-norm, where it was possible to observe that, as it was in the two previous algorithms, the
approximation proposed by Ursin and Stovas (2006) showed the third best result, Blias (2009)
showed the fourth best, and Malovichko (1978) showed the fifth best one for the conventional
reflection event (Figure 261). For the PS event, the approximation proposed by Malovichko
(1978) showed the third best result; Blias (2009), the fourth; and Ursin and Stovas (2006), the
fifth (Figure 262). For the L1-norm, it was observed that this condition also showed an

increase of the accuracy of around 10% (Figures 263 and 264).

For the MCS optimization algorithm, it was possible to observe, using the L2-norm,
which, for the conventional event, the same sequence of results shown by the previous
algorithms (Figure 265). The same could be said for the converted wave event (Figure 266),
even when showing a higher and more variable error. For the L1-norm, the error decreased in
the same manner as it was shown before (Figures 267 and 268), related to an increase of
around 10% of accuracy.

For the TOMLAB/LGO algorithm using the L2-norm, Ursin and Stovas (2006)
showed the third best result, Blias (2009) showed the fourth best result and Malovichko
(1978) showed the fifth best one for the PP event (Figure 269). For the PS event, Malovichko
(1978) showed the third best result, while Blias (2009) showed the fourth best and Ursin and
Stovas (2006) presented the fifth best one (Figure 270). Using the L1-norm, it was possible to

observe the increase of the accuracy, again for both events (Figures 271 and 272).
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Figure 253: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 254: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm.
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Figure 255: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 256: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm.
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Figure 257: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 258: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm.
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Figure 259: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 260: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm.
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Figure 261: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm.

Relative traveltime error (%)

o

]
[$;]

| ---Dix (1955)

|-=~Malovichko (1978)
—e-Alkhalifah and Tsvankin (1995)
{|——Ursin and Stovas (2006)

||+ Blias (2009)

{|~—Muir and Dellinger (1985)
——Li and Yuan (2001)
|~—Proposed approximation

-10

5000
Offset (m)

10000

]
15000

Figure 262: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm.
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Figure 263: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 264: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm.
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Figure 265: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PP reflection event with L2-norm and MCS optimization algorithm.
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Figure 266: Relative error in travel-time between the observed curve and the calculated curve with each

approximation of the PS reflection event with L2-norm and MCS optimization algorithm.
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Figure 267: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and MCS optimization algorithm.
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Figure 268: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and MCS optimization algorithm.

238



Relative traveltime error (%)

---Dix (1955)

Malovichko (1978)

|-=-Alkhalifah and Tsvankin (1995)

——Ursin and Stovas (2008)
Blias (2009)

|~ Muir and Dellinger (1985)
‘|——Li and Yuan (2001)
|~+—Proposed approximation

5000

Offset (m)

|
10000

]
15000

Figure 269: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 270: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm.
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Figure 271: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm.

N

o

1
A~

Relative traveltime error (%)
)

[~Dix (1955)

Malovichko (1978)
—e-Alkhalifah and Tsvankin (1995)

| ——Ursin and Stovas (2006)

6 ¥ i+ Blias (2009)
// {|~—Muir and Dellinger (1985)
e ——Li and Yuan (2001)
8 | ~*—Proposed approximation |
0 5000 10000

Offset (m)

]
15000

Figure 272: Relative error in travel-time between the observed curve and the calculated curve with each
approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm.
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6.6 General accuracy analysis

As it was previously observed, the proposed approximation presented the best set of
results, while Li and Yuan (2001) approximation showed the second best set of results

analysed in this work.

In general, the approximation proposed by Blias (2009) showed the third best results.
However, the approximation proposed by Malovichko (1978) showed almost the same quality
in the results as the Blias (2009) approximation. The Ursin and Stovas (2006) approximation

presented the fifth best results in a general way.

The approximations presented by Muir and Dellinger (1985) and Alkhalifah and
Tsvankin (1995) presented, respectively, the second worst and the worst results, generically,
in this work. And as it was already mentioned, all nonhyperbolic approximations tested in this
thesis yield better results than the standard hyperbolic approximation of Dix (1955)..

The quality of the results decayed significantly in the converted wave events in

comparison to the conventional PP events, due to the higher complexity of the PS events.

The application of L1-norm had a mean increase of accuracy of around 10% in

comparison with the L2-norm considering the same optimization algorithm.

Concerning the variation from the L2-norm to L1-norm, the optimization algorithm
IMFIL showed a mean increase of accuracy of around 11%. The FMINSEARCH showed a
mean increase of 9% for all approximations. The algorithm SID-PSM presented a mean
increase of 5% for all scenarios which were tested. A mean increase of 2% was shown by
MCS algorithm. The lesser difference after applying the L1-norm was shown by the

TOMLAB/LGO optimization algorithm, a mean increase of accuracy of around 1%.

Considering the IMFIL optimization algorithm as the reference, the FMINSEARCH
algorithm presented a mean increase of 68% concerning the accuracy. SID-PSM optimization
algorithm showed a mean increase of 78%; while the MCS algorithm, a mean increase of
83%. The TOMLAB/LGO optimization algorithm presented a mean increase of accuracy of

around 85%.
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6.7 Processing time analysis

Dix (1955) hyperbola equation presented the lowest processing time for every
inversion, in which the parameters were recovered. The approximation proposed by Li and
Yuan (2001) presented the second best processing time. The approximation proposed in this
work presented the third best processing time, generically. The Malovichko (1978)
approximation showed the fourth best processing time, while the approximation proposed by
Blias (2009) showed the fifth lowest processing time. The approximation proposed by
Alkhalifah and Tsvankin (1995) presented the third worst processing time, while the
approximation proposed by Muir and Dellinger (1985) presented the second worst processing
time. The highest processing time was shown by the approximation proposed by Ursin and
Stovas (2006).

Considering the IMFIL optimization algorithm as the reference, the FMINSEARCH
algorithm showed a mean increase in processing time of around 12%. The mean increase of
processing time which was shown by SID-PSM algorithm was of around 103%. The MCS
optimization algorithm showed a mean increase of 209% concerning the relative processing
time. A mean increase of 411% was observed in the processing time of the TOMLAB/LGO

optimization algorithm.

The processing times, concerning the models, have a mean increase between 2.1% and

5.4%, considering the first model as the reference, due to its simplicity.

All approximations, concerning the variation from the conventional PP wave event to

the converted PS wave event, presented a mean increase in processing time of around 11%.

Concerning the application of the L1-norm, the eight approximations had a mean

increase in processing time of 11% comparing to the L2-norm.
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7 CONCLUSIONS

The proposed automated picking technique was very important to conclude the main
objectives in this work. With this, it was possible, for each model, to find the target travel-
time curve of each reflection event. The other proposed approach was also important to find
other kinds of information concerning the phase variation, which were very important to
understand how the phase changes and how to correct it, to perform a better NMO correction
without muting a large part of the horizontalized event. It was also important to find the

critical point data-driven, which was important to obtain information about elastic parameters.

The variations between PP wave reflection events and the PS converted wave
reflection events was clearly observed concerning the displacement of the contour lines,
which is associated to the variation in the composition of the parameters. In the cases of
Models 4 and 5, the variation between the reflection events is associated to the fact that the

maximum offsets between source and receiver increase the distortion of the raytracing.

Concerning the approximations, each one presents a different structure of topology of

the objective function intrinsically related to their complexities.

The gradient of the contour lines became much more abrupt after the L1-norm was
applied rather than the L2-norm, which made a narrower global minimum region and

attenuated some features.

The variation in the topology concerning the models is associated to the fact that each
model presents different composition of parameters. Furthermore, the variation in the model
interferes significantly in some approximations, making them change their statistical
distribution (e.g. Ursin and Stovas, 2006; Blias, 2009) or making exchanges between the
global and local minimum regions (e.g. Muir and Dellinger, 1985). The second example is

also affected by the variation between PP and PS wave reflection events.

The approximations which presented unimodal behaviour were the one proposed by
Malovichko (1978) and the one proposed by Alkhalifah and Tsvankin (1995), due to their
simple topological structure of the objective function. The approximations mentioned before
(Ursin and Stovas, 2006; Blias, 2009) behaved as unimodal for the Models 1 to 3, which
presented a higher RMS velocity, while for the Models 4 and 5, which presented significantly
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lower RMS velocities, these approximations showed to be multimodal. Thus, it led to
understand that the increase of the RMS velocity of a model made the topological structure of
the objective function more abrupt. Additionally, the approximations proposed by Muir and
Dellinger (1985), Li and Yuan (2001) and the one proposed in this work showed to always be
multimodal. Furthermore, the exchanges between the global and local minimum regions of
the approximation proposed by Muir and Dellinger (1985) are associated to its idiosyncratic
structure of the objective function that has local and global minimum regions very close to
each other. Thus, the topology of the objective function was much more susceptible to

varying with the approximation than with the models, reflection events or the norms.

The proposed approximation and the one proposed by Li and Yuan (2001) share not
only the multimodality, but also the similarities concerning the objective function. However,
the approximation proposed by Li and Yuan (2001) was almost equally sensible concerning
the RMS velocity and the y parameter. On the other hand, the proposed approximation
presented an RMS velocity parameter which is much more sensible than the additional one,
which increases the precision to recover the RMS velocity, even increasing the time to
perform the curve fitting. Another important behaviour of the proposed approximation is
about the strong variation from the Models 1, 2 and 3 to the Models 4 and 5. The observed
distortion made the objective function topology even narrower, which made this

approximation reliable even for these kinds of models.

Once the hyperbola equation (Dix, 1955) is the simplest approximation being
compared, it presented the worst set of results. Among the nonhyperbolic multiparametric
approximations, the ones proposed by Alkhalifah and Tsvankin (1995) and Muir and
Dellinger (1985) were, respectively, the least and the second least accurate. The Ursin and
Stovas (2006) approximation presented the fifth best set of results, while the approximation
proposed by Malovichko (1978) showed the fourth best results. The approximation proposed
by Blias (2009) showed a set of results slightly more accurate than the one proposed by
Malovichko (1978). The approximation proposed by Li and Yuan (2001) presented as the
second most accurate. The approximation proposed in this work showed the best set of

results.

The accuracy decreased for the converted wave event due to its higher complexity,
which also happened with the complexity of the models. However, the L1-norm showed
increases concerning the accuracy for all approximations and all optimization algorithms
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tested. About the algorithms, the IMFIL showed to be the simplest one tested, while there
were increases in the accuracy for all other optimization algorithms. The one which presented
as the most precise is the TOMLAB/LGO, while the MCS presented results of almost the
same quality. The third and the fourth most accurate optimization algorithms are, respectively,
the SID-PSM and the FMINSEARCH.

The processing time of the hyperbola approximation (Dix, 1955) was, by far, the
lowest one, due to its simplicity. Among the nonhyperbolic multiparametric approximations,
the one proposed by Li and Yuan (2001) presented the best processing time, while the
proposed approximation appeared as the second best processing time. The Malovichko (1978)
approximation showed the third best processing time among the multiparametric
approximations. The Blias (2009) approximation presented the fourth lowest processing time
among the nonhyperbolic approximations. The approximations proposed by Ursin and Stovas
(2006), Muir and Dellinger (1985), and Alkhalifah and Tsvankin (1995) presented the highest

processing times, respectively.

The IMFIL was the optimization algorithm with the lowest processing time, while the
FMINSEARCH was the second one. The SID-PSM algorithm presented the third best
processing time. The highest processing time was shown by the TOMLAB/LGO and the
second highest, by the MCS optimization algorithm.

As it was expected, the conventional wave reflection events presented a lower
processing time than the converted wave reflection events. However, there was a significant

decrease in the processing time when the L1-norm was applied, rather than the L2-norm.

Among what was tested, it was possible to conclude that the residual function maps
were important to understand the behaviour and its variations for each scenario, which
brought significant information about which optimization algorithm and nonhyperbolic

approximation must be used.

The application of the L1-norm showed to be an important option to perform a good
processing, presenting faster and more accurate results than the L2-norm. However, it can

only be used with derivative-free optimization algorithms.

The optimization algorithm which presented the best results with an acceptable
processing time was the MCS algorithm, once the TOMLAB/LGO was too slow. As well, the

245



FMINSEARCH and the IMFIL can be used with the unimodal approximation proposed by
Malovichko (1978), once the inversion can be performed only once, even with a local search
algorithm. Certainly, this situation should be applied in conditions where there is enough
knowledge about the model, and not for exploratory conditions. For more complex
conditions, it is important to give more attention to the accuracy than to the processing time.
Thus, the proposed approximation along with the MCS optimization algorithm should be the

best option to obtain information in an exploratory field.

The approximation proposed in this thesis not only works very well, as it also presents
a good processing time for a multimodal approximation, and is the most accurate among the

approximations tested here for those kinds of models.
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9 APPENDIX

9.1 Appendix A — Seismogram of the pre salt models
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Figure 273: Seismogram of the Model 1 with no noise. The red lines represent the automated picks for the PP and PSv events.




Figure 274: Seismogram of the Model 1 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events.




Figure 275: Seismogram of the Model 2 with no noise. The red lines represent the automated picks for the PP and PSv events.




Figure 276: Seismogram of the Model 2 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events.
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Figure 277: Seismogram of the Model 3 with no noise. The red lines represent the automated picks for the PP and PSv events.




Figure 278: Seismogram of the Model 3 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events.
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Figure 279: Seismogram of the Model 4 with no noise. The red lines represent the automated picks for the PP and PSv events.




Figure 280: Seismogram of the Model 4 with no noise with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events.




Figure 281: Seismogram of the Model 5 with no noise. The red lines represent the automated picks for the PP and PSv events.




Figure 282: Seismogram of the Model 5 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events.




9.2 Appendix B — PVO analysis of SvSv reflection events

Figure 283: Seismograms of the four models used to perform the tests of PVO analysis. (A) Critical angle of around 37 degrees, (B) same critical angle, but with semi-
Gaussian wavelet, (C) critical angle of around 30 degrees and (D) critical angle of around 44 degrees.
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Figure 284: The variation for each trace/angle shown versus the global minimum, amplitude and peak frequency (A) of the first and (B) of the second models from the PVO

analysis.
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Figure 285: The variation for each trace/angle shown versus the global minimum, amplitude and peak frequency (A) of the third and (B) of the fourth models from the PVO
analysis.
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Figure 287: The reflection coefficient and the transmission coefficient versus the incidence angle. The red dashed line represents the critical angle of the first and second
models.
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Figure 288: The reflection coefficient and the transmission coefficient versus the incidence angle. The red dashed line represents the critical angle of the third model.
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Figure 289: The reflection coefficient and the transmission coefficient versus the incidence angle. The red dashed line represents the critical angle of the fourth model.
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9.3 Appendix C — Processing times

Table 1: Processing time (in seconds) of each inversion routine of the Model 1.

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO

EQUATIONS L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS
Dix 3410 3751 30.72 33.79 38.19 4201 3441 3785 69.22 76.15 6236 6860 1054 1159 9493 1044 1743 1917 157.0 1727
Malovichko 7112 7418 6239 6507 79.65 83.08 69.87 7288 1444 1506 1266 1321 2198 2292 1928 2011 3634 379.1 318.8 3325
Alkhalifah and Tsvankin 7550 84.47 67.41 7542 8456 9461 7550 8447 1533 1715 1368 153.1 2333 2610 2083 2331 3858 4316 3445 3854
Ursin and Stovas 79.81 86.50 6880 7457 8939 9688 77.06 8352 1620 1756 139.7 1514 2466 2673 2126 2304 407.8 4420 3516 3811
Blias 68.69 79.37 5922 6842 7693 8889 66.32 76.63 1394 161.1 120.2 1389 2123 2453 1830 2114 351.0 4056 302.6 349.6
Muir and Dellinger 76.94 89.19 68.09 7893 86.17 9989 76.26 8840 156.2 181.1 1382 160.2 2378 2756 2104 2439 393.2 4558 347.9 403.3
Li and Yuan 61.79 7229 5149 6024 6920 8096 57.67 6747 1254 1458 1045 1223 1909 2234 1591 186.2 3158 3694 263.1 307.8
Proposed approximation  67.55 74.99 56.29 6249 7566 8399 63.05 69.99 1371 1522 1143 1269 2087 2317 1739 1931 3452 3832 2877 3193
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Table 2: Processing time (in seconds) of each inversion routine of the Model 2.

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO

EQUATIONS L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS
Dix 3482 3830 3137 3450 3899 4289 3513 3864 7068 77.74 63.67 70.04 1076 1183 96.92 1066 177.9 1957 160.3 176.3
Malovichko 7261 7574 63.70 66.44 8133 8483 7134 7441 1474 1538 129.3 1349 2244 2340 1968 2053 3711 387.0 3255 3395
Alkhalifah and Tsvankin 77.09 86.24 68.83 77.00 86.34 96.59 77.09 86.24 1565 1751 139.7 156.3 238.2 2665 2127 237.9 3939 440.7 351.7 3935
Ursin and Stovas 8149 8832 7025 76.13 91.26 9891 7868 8527 1654 1793 1426 1546 2518 2729 217.1 2353 4164 4513 359.0 389.1
Blias 70.13 81.04 6046 69.86 7855 90.76 67.71 7824 1424 1645 1227 1418 216.7 2504 186.8 2159 3584 4141 309.0 357.0
Muir and Dellinger 7856 91.06 6952 8059 8798 1020 77.86 90.26 159.5 1849 1411 163.6 2427 2814 2418 2490 4014 4653 3552 4118
Liand Yuan 63.09 73.81 5257 6151 70.66 82.67 58.88 68.89 128.1 149.8 106.7 1249 1949 2281 1625 1901 3224 377.2 268.7 3143
Proposed approximation  68.97 76.56 57.47 63.80 7724 8575 6437 7146 140.0 1554 1167 1295 2131 2366 1776 1972 3524 3913 2937 326.0
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Table 3: Processing time (in seconds) of each inversion routine of the Model 3.

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO

EQUATIONS L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS
Dix 3598 3957 3241 3565 40.29 4432 36.30 39.93 73.03 80.33 65.79 7237 1102 1223 100.2 110.2 1838 2022 165.6 1822
Malovichko 75.03 78.26 6582 6865 84.04 8765 7372 76.89 1523 1589 1136 1394 2319 2418 2034 2121 3834 3999 336.3 350.8
Alkhalifah and Tsvankin  79.65 89.12 71.12 7957 89.21 9981 79.65 89.12 161.7 1809 1444 1615 2461 2754 2198 2459 407.0 4554 3634 406.6
Ursin and Stovas 84.20 9126 7259 7867 9430 102.2 8130 88.11 1709 1853 1474 159.7 260.2 2829 2243 243.1 4303 466.3 3709 402.0
Blias 7247 8374 6247 7219 8116 93.78 69.97 80.85 1471 1700 126.8 1465 2239 2587 193.0 2231 3703 4279 3192 368.9
Muir and Dellinger 81.17 9410 7183 8329 9091 1054 8045 9326 1648 191.0 1458 169.0 250.8 290.8 2219 2573 4148 480.8 367.1 4255
Liand Yuan 65.19 76.27 5432 6355 7301 8542 6084 7118 1323 1548 110.3 129.0 2014 2357 1679 1964 3331 389.7 277.6 3248
Proposed approximation 7127 79.11 59.39 6593 7982 8861 6651 73.84 1447 160.6 1206 1338 2202 2445 1835 2037 3642 4043 3035 336.9
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Table 4: Processing time (in seconds) of each inversion routine of the Model 4.

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO

EQUATIONS L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS
Dix 35.63 39.20 3210 3531 3991 4390 3596 3955 7234 7957 6517 7169 1101 1211 99.20 109.1 1821 200.3 164.1 1805
Malovichko 7432 7752 6519 6800 8324 86.82 73.02 76.16 1509 1574 1323 138.0 229.7 2395 2015 2101 3798 396.1 3331 3475
Alkhalifah and Tsvankin 7890 88.27 70.44 78.81 8837 9868 78.90 88.27 160.2 179.2 143.0 1600 2438 2728 2177 2435 4032 4511 3600 4027
Ursin and Stovas 8340 9039 7190 7792 9341 101.2 8053 87.28 169.3 1835 146.0 158.2 257.7 279.3 2222 240.8 426.2 4619 3674 398.2
Blias 7178 8294 6188 7150 80.39 9289 69.31 80.08 1457 1684 1256 1452 2218 2563 1912 2209 366.8 4238 316.2 3654
Muir and Dellinger 80.40 9320 7115 8248 90.05 1404 79.69 9238 163.2 189.2 1444 1674 2484 288.0 2199 2549 4109 476.3 363.6 4215
Liand Yuan 64.57 7554 5381 6295 7232 84.61 60.27 7051 1311 1534 109.2 127.8 1995 2334 166.3 1945 3300 386.0 275.0 3217
Proposed approximation ~ 70.59 7836 58.82 6530 79.06 87.77 6588 73.14 1433 159.1 1194 1326 2181 2422 1818 201.8 360.7 4004 300.6 333.7
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Table 5: Processing time (in seconds) of each inversion routine of the Model 5.

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO

EQUATIONS L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS
Dix 35,57 39.12 3204 3525 39.83 4382 3589 3948 7220 7942 65.04 7155 1099 1209 99.01 1089 181.7 199.9 163.7 180.1
Malovichko 7418 7737 65.07 6787 8308 86.65 7288 76.01 1506 157.1 1321 137.8 229.2 239.1 2011 209.7 379.1 3954 3325 346.8
Alkhalifah and Tsvankin 78.75 88.10 70.31 78.66 8820 98.67 78.75 8810 159.9 1789 1427 159.7 2433 2272 2173 2431 4024 450.2 359.3 4020
Ursin and Stovas 83.24 90.22 7176 77.78 9323 101.1 8037 87.11 169.0 183.2 1457 1579 257.2 2788 221.7 2403 4254 4610 366.7 3974
Blias 7164 8278 6176 7136 80.24 92.72 69.17 7993 1454 168.1 1254 1449 2214 2558 190.8 220.5 366.1 423.0 3156 364.7
Muir and Dellinger 80.25 93.03 71.02 8232 89.88 104.2 7954 9220 1629 1888 1442 167.1 248.0 2875 2194 2544 4101 4754 3629 4207
Liand Yuan 64.45 7540 5371 6283 7218 8445 6015 7037 1308 1531 109.0 127.6 199.1 233.0 166.0 1942 329.3 3853 2744 3211
Proposed approximation ~ 70.45 7821 5871 6518 7891 8760 6576 73.00 143.0 1588 119.2 1323 2177 2417 1814 2014 3600 399.7 300.0 333.1
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