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ABSTRACT 

 

 ZUNIGA, N. R. C. F. Nonhyperbolic multiparametric travel-time approximation 

for converted-wave and OBN data. 2021. 277 p. Tese (Doutorado em Ciências) — Instituto 

de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 

2021. 

 

 To obtain a more accurate stratigraphic model, it is important to perform a reliable 

velocity analysis by fitting the calculated travel-time curve to the recorded one. The main 

challenge to perform this step in the offshore seismic survey is the fact there are many factors 

which present characteristics that generate nonhyperbolicity in travel-time events. For this 

reason, it is necessary to use an approximation which is able to control the effects of the 

nonhyperbolicity so that performing an efficient velocity analysis is possible. 

 The main proposition of this thesis was to develop a generalization of a nonhyperbolic 

multiparametric travel-time approximation, which can control the nonhyperbolicity associated 

to heterogeneity of layered media and long offsets, wave conversion, and difference of datum 

between source and receiver. This work proposes a numerical study which aims to analyse the 

complexity of the objective function, the quality and efficiency of the travel-time curve fitting 

with different approximations, using different optimization algorithms and using the L1- and 

L2-norm. Three of the five models studied in this thesis were elaborated from well logs data 

of the Santos Basin and showed different characteristics making the proposed analysis more 

complex. The other two models were adapted to test some limits of the nonhyperbolic 

approximation (including the proposed one). Another important proposition was the 

development of an automated picking technique to obtain the reflection events related to the 

interface between the bottom of the salt and the top of the reservoir (target reflection). That 

technique was also part of a set of tests to obtain information of phase variation. 

 It was possible to determine how complex each approximation is with the set of 

information obtained by the residual function maps analysis. The quality of the fitting and the 

efficiency of each approximation were also analysed. The optimization algorithm which 

showed the best results was determined. The difference between the use of L1-norm and L2-
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norm was also studied and it was determined which one is better to work for each kind of 

inverse problem. With all these analyses, it was possible to identify which approximation 

along with which optimization algorithm present the best results for each reflection event of 

each model after the inversion. The automated picking technique proved to be able to obtain 

the target reflection seismic events and information of phase variation. 

Keywords: nonhyperbolic, multicomponent, converted wave, OBN, phase shift. 
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RESUMO 

 

 ZUNIGA, N. R. C. F. Aproximação não-hiperbólica multiparamétrica de tempos 

de trânsito para onda convertida e dado OBN. 2021. 277 p. Tese (Doutorado em Ciências) 

— Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 

São Paulo, 2021. 

 

 Para obter um modelo estratigráfico mais preciso, é importante realizar uma confiável 

análise de velocidades, ajustando a curva de tempos de trânsito calculada com a curva 

observada. O principal desafio para realizar esta etapa em um levantamento sísmico marítimo 

é o fato de haver diversos fatores que apresentam características que geram não-

hiperbolicidade nos eventos de tempos de trânsito. Por esta razão, é necessário usar uma 

aproximação que seja capaz de controlar os efeitos da não-hiperbolicidade para que seja 

possível realizar uma eficiente análise de velocidades. 

 A principal proposta dessa tese foi desenvolver uma generalização de uma 

aproximação não-hiperbólica multiparamétrica de tempos de trânsito, que possa controlar a 

não-hiperbolicidade associada à heterogeneidade em meios estratificados e longos 

afastamentos, conversão de onda e diferença de profundidade entre fonte e receptor. Um 

estudo numérico foi proposto visando analisar a complexidade das funções objetivo, a 

qualidade e eficiência do ajuste das curvas de tempos de trânsito com diferentes 

aproximações, utilizando diferentes algoritmos de otimização e utilizando normas L1 e L2. 

Três dos cinco modelos estudados nesta tese foram elaborados de perfis de poços da Bacia de 

Santos e mostraram diferentes características, fazendo a análise proposta mais complexa. Os 

outros dois modelos foram adaptados para testar alguns limites das aproximações não-

hiperbólicas (incluindo a aqui proposta). Outra proposta importante foi o desenvolvimento de 

uma técnica de seleção automática para obter as reflexões relacionadas às interfaces entre a 

base do sal e o topo do reservatório (reflexão alvo). Esta técnica foi também parte de um 

conjunto de testes para obter informações de variação de fase. 

 Foi possível determinar o quão complexa cada aproximação é com o conjunto de 

informações obtido pela análise de mapas residuais de função objetivo. A qualidade de ajuste 
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e a eficiência de cada aproximação também foram analisadas. Foram determinados os 

algoritmos de otimização que mostraram os melhores resultados. Foi estudada a diferença 

entre as normas L1 e L2, e foi determinada a melhor para se trabalhar com cada tipo de 

problema inverso. Com todas essas análises, foi possível identificar qual aproximação junto 

de qual algoritmo de otimização apresenta os melhores resultados para cada evento de 

reflexão de cada modelo depois da inversão. A técnica de seleção automática provou ser apta 

para obter os eventos sísmicos de reflexão almejados e informações de variação de fase. 

Palavras chave: não-hiperbólico, multicomponente, onda convertida, OBN, mudança de fase. 
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1 INTRODUCTION 

 

The seismic method aims at characterizing the geology of a region, frequently with the 

objective of exploring hydrocarbon reservoirs. For this purpose, the method analyzes 

recordings of elastic waves produced by artificial sources. The seismic waves that return to 

the surface travel through the subsurface until they reach an interface, where they reflect and 

refract due to the differences between their physical properties of the overlying and 

underlying layers. Then, it is possible to extract information of the waves received, which 

allows to construct an image of the subsurface. 

 To record the seismic waves, many receivers are placed on the surface at different 

offsets from the source. There are two kinds of receivers: geophones, which are the receivers 

able to detect the velocity of the ground movement; and hydrophones, which detect the 

pressure variation in aquatic media. Different acquisition geometries are proposed to group 

the receivers into arrays, which depend on the objectives of the seismic acquisition (Sheriff 

and Geldart, 1995). 

 The seismic method is broadly used for the hydrocarbon exploration (Kearey, Brooks 

and Hill, 2002). The reason is that the seismic method is capable of mapping interfaces and 

other structures in the seismic sections, which allows constructing a stratigraphic and 

geological model (Kearey, Brooks and Hill, 2002). 

 Though the seismic method was originally conceived for hydrocarbon exploration, it is 

also used for mineral exploration, hydrogeology and environmental science. Even near-

surface seismic, in spite of many similarities, presents some different characteristics due to the 

depth scale of hydrocarbon exploration. In particular, near-surface seismic involves low 

multiplicity of the CMP (Common Mid-Point) survey, strong interferences of ground roll for 

short offsets and changes in the waveform due to the supercritical reflections. 

 The compressional P-waves, recorded conventionally in seismic surveys, are obtained 

with vertical geophones, unlike the multicomponent seismic, which is able to determine the 

polarization of shear S-waves by the three component geophones, one vertical and two 

orthogonally arrayed (Bokhonok, 2010; Zuniga, 2017). 
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 Multi-component seismic data have shown themselves extremely important for 

improving the subsurface characterization, because they contain more complete information 

about the elastic wave field than single-component data. The use of multicomponent seismic 

provides many enhancements — such as the determination of Vp/Vs ratio to mapping the 

lithological variation (Pickett, 1963, Stewart et al., 2002, Agudelo et al., 2013), the possibility 

of obtaining the seismic sections even with a weak P reflectivity (Pickett, 1963, Stewart et al., 

2002, Agudelo et al., 2013), the possibility of a better resolution of the seismic image 

(Stewart et al., 2003; Meier and Lee, 2009, Ursenbach et al., 2013), a better imaging of high 

angle faults (Purnell, 1992, Stewart et al., 2003, Wang et al., 2014), a better imaging through 

gas cloud (Granli el al. 1995), a better fluid discrimination (Qian et al., 2007), and monitoring 

the variations of the 4D seismic (Spitz et al., 2000). 

 Multicomponent seismic has been proven to be able to overcome some of the 

limitations of the conventional seismic (Kendall, 2006; Davis, 2001), and for this reason, it 

was expected that multicomponent seismic would become the leading technique for both 

onshore and offshore surveys (Davis, 2001; Hardage et al., 2011). 

 The steps to perform seismic processing have their complexity increased significantly 

when the converted wave is also analysed (Bokhonok, 2010). This happens because the 

incident wave presents a different velocity than the reflected wave, which results in an 

asymmetric ray tracing. The asymmetric ray tracing, generated by the wave conversion, 

produces a nonhyperbolic travel-time event. Moreover, Zuniga (2017) discussed about a 

number of possible causes of the nonhyperbolicity in a seismic event. 

 Vertical heterogeneity, combined with long offsets between source and receiver, is 

another factor able to generate a nonhyperbolic event, once there is a difference between the 

interval velocity and the RMS (Root Mean Square) velocity, and this discrepancy increases 

with larger offsets (Malovichko, 1978; Zuniga, 2017). 

 The use of OBN (Ocean Bottom Nodes) technology, even providing the PS event 

information, produces a different kind of ray tracing asymmetry than the one produced by the 

wave conversion (Zuniga, 2015 and 2017). In this case, the asymmetric seismic reflection 

event is generated by the difference between the datum of the source (on the ocean surface) 

and the receivers (on the seabed), which presents a difference between the distance traveled 

by the incident and the reflected rays (Zuniga, 2017). However, using the OBN technology 
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enables the acquisition of converted waves, which was impossible to obtain with the 

conventional technology (streamer) on offshore surveys, once the S-waves cannot travel 

through Newtonian fluids, as water. 

 The different causes of the nonhyperbolicity in a general form have been studied in 

recent decades in different works (Malovichko, 1978; Blias, 1983 and 2009; Gonzalez-

Serrano and Claerbout, 1984; Muir and Dellinger, 1985; Castle, 1988 and 1994; Nowroozi, 

1989; Slotboom, 1990; Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Sain 

and Kaila, 1996; Li and Yuan, 1999, 2001 and 2002; Cheret et al., 2000; Causse et al., 2000; 

Tsvankin and Grechka, 2000a,b; Fomel and Grechka, 2000 and 2001; Tsvankin, 2001; 

Leiderman et al., 2003; Silva et al., 2003; Ursin and Stovas, 2006; Abedi and Riahi, 2016). 

Most of these works aimed at developing travel-time approximations capable of describing 

the nonhyperbolicity generated by one or more causes, so as to perform the velocity analysis 

of a nonhyperbolic event. 

 Morover, there were some works intended to compare the different approximations for 

different cases during the velocity analysis (Aleixo and Schleicher, 2010; Golikov and Stovas, 

2012; Zuniga et al., 2015 and 2016; Zuniga, 2017). 

 Through the analysis of the developed approximations, with tests in real and 

theoretical models, it is possible to conclude that there is no approximation capable of fitting 

travel-times equally well for all models. However, some approximations presented better 

results than the others, and also demonstrated to be much more general than the others 

(Zuniga et al., 2015 and 2016; Zuniga, 2017). 

 Despite presenting good results, even the approximations which showed the best 

results in previous works have difficulties to describe some of some nonhyperbolic effects. 

For this reason, it is necessary to develop a more general approximation, capable of 

describing the effects that the other approximations have problems to deal with. 

 Starting with the analysis of Malovichko (1978), it is possible to understand how 

reaching an approximation can control the vertical heterogeneity. Blias’ (2009) approximation 

is a strong complement to the vertical heterogeneity study. The studies from Tsvankin and 

Thomsen (1994), Alkhalifah and Tsvankin (1995) and Thomsen (1999) help with the effects 

of anisotropy. The Li and Yuan (2001) equation is a more general approximation and, for this 

reason, it is an important manner to combine multiple parameters in order to describe different 
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nonhyperbolic effects. The difference of datum between source and receiver can be 

considered in the approximation proposed by Wang and Pham (2001). 

 A more general approximation must consider the effects of vertical heterogeneity for 

large offsets, anisotropy, wave conversion and the difference of datum between source and 

receiver. 

 After the development of an approximation capable of considering these causes of 

nonhyperbolicity, it must be compared to the other approximations to observe in which 

aspects the proposed one provides better results than the others. 

 The analysis must be performed by a comparison of curve fitting between the 

observed and the calculated travel-time curves from the reflection events. Considering the fact 

that the approximations have more than two parameters, it must be treated as an inverse 

problem according to an optimization criterion. The comparison of optimization algorithms 

must also be performed to determine the one which can minimize the processing time with a 

good accuracy. 

 Not only the residual travel-time must be compared, but also the complexity of the 

approximations, to understand the capacity of being unimodal or multimodal, which affects 

the processing time. Another important analysis is the comparison between L1-norm and L2-

norm to find out if there is some decrease of the processing time or difficulty of reaching the 

global minimum. 

 With all these analyses, it is possible to find if the proposed approximation can 

describe the nonhyperbolic effects and present better results than the other approximations. 

  

1.1 Objectives 

To develop an approximation which considers the nonhyperbolicity associated with 

vertical heterogeneity, anisotropy, wave conversion and difference of datum between source 

and receiver. 

To study the complexity of the objective function to understand its topology, then find 

if it is unimodal or multimodal. This information is important to select which kind of 
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optimization algorithm must be used and if the data processing can take much processing 

time. 

 To perform the velocity analysis comparing the proposed approximation with the 

others to find if it can fit the calculated travel-time curve with the observed curve with a lower 

residual travel-time. 

 To make this possible, an automated pick to obtain the travel-time curve of the target 

interface is also proposed by using the spectral recomposition to find the specific wavelet of 

each trace from the target event. 

 As a complementary study, the proposition of investigating the use of the spectral 

recomposition also provides important information concerning the wave phase, which allows 

for a deeper understanding of the critical and post critical reflection. 
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2 FUNDAMENTALS AND NONHYPERBOLICITY 

  

 The nonhyperbolicity is a behaviour caused by wave behaviour and characteristics of 

the medium. These factors act generating interferences in the conventional hyperbolic 

behaviour of a travel-time curve. As the conventional seismic processing considers the events 

hyperbolic, techniques which can overcome this difficulty must be used, once the travel-time 

curves are not hyperbolic in many real situations. 

 In this chapter, some general fundamentals are presented aiming to understand the 

different causes for nonhyperbolicity as it was shown by Zuniga (2017). 

 

2.1 Seismic waves 

 The seismic waves are energy which propagates through the Earth and are originated 

by earthquakes or artificial sources. The body waves travel through material media and can be 

reflected or refracted in interfaces between layers or geological structures, depending on the 

difference of the physical properties (Kearey, Brooks and Hill, 2002). 

 

2.1.1 Compressional waves 

 The compressional waves, also called P-waves, travel in a longitudinal way, the same 

direction of the particle motion and wave propagation. It travels by compressing and 

distending the medium by which the wave propagates (Figure 1). Then, the P-wave travels 

faster than the other kinds of body waves, and can travel through any kind of material 

medium, whether solid, liquid or gas. 

 

Figure 1: Elastic deformation and particle motion associated with the passage of P-waves. (Kearey, Brooks and 

Hill, 2002). 
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2.1.2 Shear waves 

 The shear waves (S-waves) travel in a transversal form, with the direction of the 

particle motion perpendicular to the wave propagation axis, shearing the medium by which 

they travel (Figure 2). Then, the S-wave travels through the medium with an inferior velocity 

than the P-wave, and it is not capable of traveling through liquid and gas. 

 

Figure 2: Elastic deformation and particle motion associated with the passage of S-waves. (Kearey, Brooks and 

Hill, 2002). 

 

2.2 Multicomponent seismic 

 Multicomponent seismic differs from the conventional seismic by the use of not only 

P-wave record, but also Sv-waves (vertically polarized S-waves), and Sh-waves (horizontally 

polarized S-waves), which can be separated from P-wave movement. Therefore, converted 

waves events as PSv and SvP can be recorded. 

 The seismic processing for the multicomponent seismic data is much more 

complicated, because five processing sequences are necessary (Figure 3), one for each kind of 

reflection event (PP, SvSv, ShSh, PSv and SvP), once each one represents different frequency 

and velocity contents. Besides, each kind of reflection event presents different magnitudes of 

random and coherent noises. 
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Figure 3: Representation of the recorded components in a Cartesian coordinate system (XYZ). The red star 

represents the sources and the blue triangle represents the receivers. (Zuniga, 2017). 

 

2.2.1 Wave conversion 

 When a P-wave reaches an interface between two layers, it can reflect or refract as an 

S-wave (and vice versa), and then generate a converted wave. Hence, in a case of converted 

wave event, the incident wave ray has a velocity and an angle different than the emergent 

wave ray (Figure 4). This kind of situation results in a nonhyperbolic event due to the ray 

traces asymmetry between the incident ray and the emergent ray. 

 

Figure 4: (a) Wave reflection at the common mid-point (CMP); (b) PSv wave reflection at the common 

conversion point (CCP). (Zuniga, 2017). 
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2.3 OBN technology 

 The OBN (Ocean Bottom Nodes) technology uses the source on the surface and the 

receivers on the bottom of the ocean (Figure 5). The conventional offshore acquisition 

technology (Streamer) is different due to the fact it uses the source and the receiver on the 

surface of the ocean, which makes acquiring multicomponent seismic data impossible, once 

the S-waves cannot travel through the water. However, the using of OBN technology 

generates a ray trace asymmetry concerning the difference of datum between source and 

receiver resulting in a nonhyperbolic event. 

 

Figure 5: PP and PS wave reflection events with the use of OBN technology. (Zuniga, 2017). 

 

2.4 RMS velocity 

 The RMS (Root Mean Square) velocity is the quadratic mean of the interval velocities. 

As, during the seismic processing, the RMS velocity is used, it is natural to have an error 

associated to the difference between the RMS velocity and the set of interval velocities. This 

error increases while the offset is increased (Figure 6), and then for offsets larger than the 

reflector depth, the hyperbolic approach is not valid anymore. 
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Figure 6: Schematization demonstrating how the RMS velocity differs from the set of interval velocities as the 

offset is increased. Solid lines represent the interval velocities and the dotted lines represent the RMS velocity. 

(Zuniga,2017). 
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3 NONHYPERBOLIC EXPRESSIONS TO PERFORM VELOCITY 

ANALYSIS 

 

 Nonhyperbolic travel-time events cannot be described by the conventional hyperbola 

expression, and, for this reason, it is necessary to use approximations which are able to 

describe the nonhyperbolicity. Most of them use one more parameter to describe the 

nonhyperbolicity related to their specific origin. 

 In this work, a generalization of a nonhyperbolic multiparametric travel-time 

approximation for converted-wave is proposed to consider the also the nonhyperbolic effect 

generated by the difference of datum between source and receivers. 

 

3.1 Proposed approximation 

The main complication to process multicomponent seismic data concerns the ray 

tracing asymmetry associated to the converted wave. However, we can describe this relation 

between the incident P-wave ray and the reflected S-wave ray, with Snell’s law, 

sin 𝜃𝑃
𝑉𝑃

=
sin 𝜃𝑆
𝑉𝑆

= 𝑝 , 

 

(1) 

where 𝑉𝑃is the P-wave velocity, 𝑉𝑆 is the S-wave velocity, 𝜃𝑃 is the angle between the P-wave 

incident ray and the normal component, 𝜃𝑆 is the angle between the S-wave reflected 

emergent ray and the normal component, and 𝑝 is the ray parameter which is constant along 

the ray for isotropic media. The ray parameter for this situation is described by 

𝑝 =
𝑑𝑡𝐶
𝑑𝑥
 , 

 

(2) 

where 𝑡𝐶 is the arrival time of the converted wave at an offset 𝑥. 

 The sum of the one-way oblique travel-time through the layer for the P-wave (𝑡𝑃) and 

the one-way oblique travel-time through the layer for the S-wave (𝑡𝑆) results in the converted 

wave arrival time, written as 
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𝑡𝐶 = 𝑡𝑃 + 𝑡𝑆 .  
 

(3) 

 The time which an incident ray of a P-wave takes to reach the reflector is described by 

𝑡𝑃 =
𝑧

𝑉𝑃 cos 𝜃𝑃
 , 

 

(4) 

where 𝑧 is the reflector depth considering the source and the receiver at the same datum.  

There is also the time that the reflected ray of an S-wave takes to reach the receiver 

after the reflection, described as 

𝑡𝑆 =
𝑧

𝑉𝑆 cos 𝜃𝑆
 . 

 

(5) 

The 𝑡𝐶 is therefore described as the sum of the Equations 4 and 5, and can be written 

as 

𝑡𝐶 =
𝑧

𝑉𝑃 cos 𝜃𝑃
+

𝑧

𝑉𝑆 cos 𝜃𝑆
 . 

 

(6) 

Similar to Equation 6, the offset 𝑥 is given by 

𝑥 = 𝑉𝑃 𝑡𝑃 sin 𝜃𝑃 + 𝑉𝑆 𝑡𝑆 sin 𝜃𝑆 = 𝑝 𝑉𝑃
2 𝑡𝑃 + 𝑝 𝑉𝑆

2 𝑡𝑆 .  
 

(7) 

For more complex cases, the approximations derived from the Taylor series must be 

used (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Thomsen, 1999). The 

expansion of the expression in 𝑡2 versus 𝑥2 results in 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 + 𝐴4𝑥

4 +⋯ , 

 

 

(8) 

where 𝐴4 is a non-independent term from the expansion. The 𝐴4 is going to be later explained 

in this chapter. 𝑉𝐶2 denotes the RMS stacking velocity of the converted wave. 

 To consider the converted wave travel-time for a zero offset (𝑡𝐶0), the relation must be 

initially written as 

𝑡𝐶0 = 𝑡𝑃0 + 𝑡𝑆0 , 
 

(9) 
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where 𝑡𝑃0 and 𝑡𝑆0 are, for a zero offset, the one-way travel-time of a P-wave and an S-wave, 

respectively. 

 The Equation 9 can be expressed and rewritten as 

𝑡𝐶0 = 𝑡𝑃0 +
𝑡𝑃0 𝑡𝑆0
𝑡𝑃0

= 𝑡𝑃0 (1 +
𝑡𝑆0
𝑡𝑃0
) .  

 

(10) 

 Thomsen (1999) introduced a parameter as the ratio between 𝑡𝑃0 and 𝑡𝑆0, written as 

𝛾0 =
𝑉𝑃
𝑉𝑆
=

𝑧
𝑡𝑃0
𝑧
𝑡𝑆0

=
𝑡𝑆0
𝑡𝑃0
 .  

 

(11) 

 Substituting Equation 11 into Equation 10 gives 

𝑡𝐶0 = 𝑡𝑃0(1 + 𝛾0) .  
 

(12) 

For anisotropic cases, the short-spread moveout velocities are affected by the 

anisotropy. Tsvankin and Thomsen (1994) proposed that this influence could be characterized 

by the relation among the vertical P-wave and S-wave velocities and the independent 

anisotropic parameters 𝛿 and 𝜎. These relations are given by 

𝑉𝑃2
2 = 𝑉𝑃0

2 (1 + 2𝛿) 
 

(13) 

and 

𝑉𝑆2
2 = 𝑉𝑆0

2 (1 + 𝜎) . 
 

(14) 

Here, 𝑉𝑃2 and 𝑉𝑆2 are P-wave and S-wave RMS stacking velocities, respectively. 

Tsvankin and Thomsen (1994) also determined that if there are many anisotropic 

layers, the squared vertical velocities should be considered as the RMS vertical velocities. 

The ratio between 𝑉𝑃2 and 𝑉𝑆2was introduced by Thomsen (1999) as 

𝛾2 =
𝑉𝑃2
𝑉𝑆2
 . 

 

(15) 

 Thomsen (1999) introduced the ratio between the squared 𝛾2 from the Equation 15 and 

𝛾0 from Equation 11 as 
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𝛾𝑒𝑓𝑓 =
𝛾2
2

𝛾0
 . 

 

(16) 

Replacing Equation 15 into Equation 16 gives 

𝛾𝑒𝑓𝑓 =
𝛾2
2

𝛾0
=

𝑉𝑃2
2

𝑉𝑆2
2

𝑡𝑆0
𝑡𝑃0

=
𝑉𝑃2
2

𝑉𝑆2
2

1

𝛾0
 . 

 

(17) 

 

For a multilayered media, Li and Yuan (2001 and 2003) described the one-way travel-

time of a P-wave and an S-wave for a zero offset as 

𝑡𝑃0 =∑Δ𝑡𝑃0𝑖

𝑛

𝑖=1

 

 

(18) 

and 

𝑡𝑆0 =∑Δ𝑡𝑆0𝑖

𝑛

𝑖=1

 . 

 

(19) 

Where Δ𝑡𝑃0𝑖 and Δ𝑡𝑆0𝑖 are the travel-times of each layer for, respectively,  P-waves and S-

waves. 

Introducing 𝑉𝑃2
2  and 𝑉𝑆2

2 , respectively, into Equations 18 and 19 and reorganizing them 

gives 

𝑉𝑃2
2 =

1

𝑡𝑃0
∑𝑉𝑃2

2  Δ𝑡𝑃0𝑖

𝑛

𝑖=1

 

 

(20) 

and 

𝑉𝑆2
2 =

1

𝑡𝑆0
∑𝑉𝑆2

2  Δ𝑡𝑆0𝑖

𝑛

𝑖=1

 . 

 

(21) 

Then, these relations with Equation 9 give 

𝑡𝐶0 𝑉𝐶2
2 = 𝑡𝑃0 𝑉𝑃2

2 + 𝑡𝑆0 𝑉𝑆2
2  . 

 

(22) 
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Replacing Equation 12 into Equation 22 gives 

𝑡𝑃0(1 + 𝛾0) 𝑉𝐶2
2 = 𝑡𝑃0 𝑉𝑃2

2 + 𝑡𝑆0 𝑉𝑆2
2  . 

 

(23) 

Rearranging Equation 23 gives 

𝑉𝐶2
2 =

𝑡𝑃0 𝑉𝑃2
2 + 𝑡𝑃0 𝛾0 𝑉𝑆2

2

𝑡𝑃0(1 + 𝛾0) 
 , 

 

(24) 

and therefore it results in 

𝑉𝐶2
2 =

 𝑉𝑃2
2 + 𝛾0 𝑉𝑆2

2

(1 + 𝛾0) 
 .  

 

(25) 

 Rearranging Equation 25 into 

𝑉𝑆2
2 =

(1 + 𝛾0)𝑉𝐶2
2 − 𝑉𝑃2

2

𝛾0
 , 

 

(26) 

and replacing it into Equation 17 gives 

𝛾𝑒𝑓𝑓 =
𝑉𝑃2
2

(1 + 𝛾0)𝑉𝐶2
2 − 𝑉𝑃2

2

𝛾0
 𝛾0

 , 

 

(27) 

and simplifying it results in 

𝛾𝑒𝑓𝑓 =
𝑉𝑃2
2

(1 + 𝛾0)𝑉𝐶2
2 − 𝑉𝑃2

2  
 . 

 

(28) 

The rearrangement of Equation 28 to evidence 𝑉𝑃2
2  is given by 

𝑉𝑃2
2 = 𝛾𝑒𝑓𝑓[(1 + 𝛾0)𝑉𝐶2

2 − 𝑉𝑃2
2 ] , 

 

(29) 

and distributing 𝛾𝑒𝑓𝑓gives 

𝑉𝑃2
2 = 𝛾𝑒𝑓𝑓(1 + 𝛾0)𝑉𝐶2

2 − 𝛾𝑒𝑓𝑓 𝑉𝑃2
2  , 

 

(30) 

and hence results in 

𝑉𝑃2
2 + 𝛾𝑒𝑓𝑓 𝑉𝑃2

2 = 𝛾𝑒𝑓𝑓(1 + 𝛾0)𝑉𝐶2
2  , 

 

(31) 
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and evidencing 𝑉𝑃2
2  gives 

𝑉𝑃2
2 (1 + 𝛾𝑒𝑓𝑓)  = 𝛾𝑒𝑓𝑓(1 + 𝛾0)𝑉𝐶2

2  , 

 

(32) 

which finally leads to 

𝑉𝑃2
2 =

𝑉𝐶2
2  𝛾𝑒𝑓𝑓(1 + 𝛾0)

(1 + 𝛾𝑒𝑓𝑓)
 . 

 

(33) 

Rearranging Equation 17 into 

𝑉𝑆2
2 =

𝑉𝑃2
2  

𝛾0 𝛾𝑒𝑓𝑓
 , 

 

(34) 

and replacing Equation 33 into Equation 34 gives 

𝑉𝑆2
2 =

𝑉𝐶2
2  𝛾𝑒𝑓𝑓(1 + 𝛾0)

(1 + 𝛾𝑒𝑓𝑓)𝛾0 𝛾𝑒𝑓𝑓
 , 

 

(35) 

and simplifying it results in 

𝑉𝑆2
2 =

𝑉𝐶2
2 (1 + 𝛾0)

(1 + 𝛾𝑒𝑓𝑓)𝛾0 
 . 

 

(36) 

 Introducing the anisotropic parameters 𝜂 and 𝜁, proposed by Tsvankin and Thomsen 

(1994) and used by Alkhalifah and Tsvankin (1995), which respectively control the 

anisotropic behaviour in long-spread P-wave reaction moveout, and controls the anisotropic 

behaviour in intermediate-spread S-wave moveout, there are 

𝜂𝑖 =
𝜖𝑖 − 𝛿𝑖

(1 + 2𝛿𝑖)2

(

 
 
1 +

2𝛿𝑖

1 −
𝑉𝑆0𝑖
2

𝑉𝑃0𝑖
2
)

 
 

 

 

(37) 

and 

𝜁𝑖 =
𝜎𝑖

(1 + 2𝜎𝑖)2

(

 
 
1 +

2𝛿𝑖

1 −
𝑉𝑆0𝑖
2

𝑉𝑃0𝑖
2
)

 
 
 , (38) 
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where 𝜎 is described by 

𝜎𝑖 = 𝛾0
2(𝜖𝑖 − 𝛿𝑖) , 

 

(39) 

and where 𝜖 quantifies the difference between the wave velocities along the symmetry axis 

and perpendicular to the symmetry axis, and 𝛿 describes the P-wave propagation for angles 

close to the symmetry axis. 

 Alkhalifah and Tsvankin (1995) found that the effect of the term 𝑉𝑆0𝑖
2 𝑉𝑃0𝑖

2⁄  is ignorable 

for long-spread P-wave propagation, which reduces the Equation 37 to 

𝜂𝑖 =
𝜖𝑖 − 𝛿𝑖

(1 + 2𝛿𝑖)2
(1 + 2𝛿𝑖) =

𝜖𝑖 − 𝛿𝑖
1 + 2𝛿𝑖

 . 

 

(40) 

 Yuan (2002) observed that, for intermediate-spread S-wave propagation, the effect of 

the term 𝑉𝑆0𝑖
2 𝑉𝑃0𝑖

2⁄  can also be ignored for Equation 38, and after rearranging, it gives 

𝜁𝑖 = 𝛾𝑒𝑓𝑓
2  𝜂𝑖  

 

(41) 

 

To generate the generalized equation, the conversion-point offset (𝑥𝑐) for a converted 

wave ray which was converted at the bottom of the 𝑛-th layer (the layer above the reflection) 

and was reflected emerging at offset 𝑥 must be considered. It can be described by 

𝑥𝑐 = 𝑥 (𝑐0 +
𝑐2 𝑥

2

1 + 𝑐3 𝑥2
) , 

 

(42) 

where Thomsen (1999) described that 𝑐3 = 𝑐2/(1 − 𝑐0). 

The coefficients 𝑐0 and 𝑐2 must be derived, and it starts with the consideration 

proposed by Li and Yuan (2003) that 𝑥𝑃 = 𝑥𝐶 . Then there is the relation of the total offset ray 

path described as 

𝑥 = 𝑥𝑃 + 𝑥𝑆 , 
 

(43) 

where 
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𝑥𝑃 =∑Δ𝑥𝑃𝑖

𝑛

𝑖=1

= 𝑝∑U𝑃𝑖 Δ𝑡𝑃𝑖

𝑛

𝑖=1

 

 

(44) 

and 

𝑥𝑆 =∑Δ𝑥𝑆𝑖

𝑛

𝑖=1

= 𝑝∑U𝑆𝑖  Δ𝑡𝑆𝑖

𝑛

𝑖=1

 . 

 

(45) 

The 𝑈𝑖 can be described as 

𝑈𝑖 =
𝑤1𝑖
𝑝
 , 

 

(46) 

where 𝑤1𝑖 is the horizontal component of the group velocity vector (Li and Yuan, 2001 and 

2003). 

 As 𝑥𝑃 is an odd function of 𝑥, the Taylor expansion of the conversion point offset 𝑥𝑃 

at the total offset 𝑥 can be described by 

𝑥𝑃 = lim
𝑥→0

∑c2𝑘 𝑥
2𝑘+1

∞

𝑘=0

= lim
𝑝→0

∑c2𝑘 𝑥
2𝑘+1

∞

𝑘=0

 , 

 

(47) 

where 

c𝑘2 =
1

(2𝑘 + 1)!

𝑑2𝑘+1𝑥𝑝

𝑑𝑥2𝑘+1
 . 

 

(48) 

 For 𝑘 = 0, c0 can be described by 

c0 = lim
𝑝→0

𝑑𝑥𝑝

𝑑𝑥
= lim

𝑝→0

𝑑𝑥𝑝

𝑑𝑝

𝑑𝑝

𝑑𝑥
 . 

 

(49) 

From Equations 43, 44, 45 and 46, 

𝑑𝑥𝑝

𝑑𝑝

𝑑𝑝

𝑑𝑥
=
𝑏1
𝑏2
 , 

 

(50) 

where 
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𝑏1 =∑𝑈𝑃𝑖 Δ𝑡𝑃𝑖 + 𝑝
𝑑

𝑑𝑝
(∑𝑈𝑃𝑖 Δ𝑡𝑃𝑖

𝑛

𝑖=1

)

𝑛

𝑖=1

 

 

(51) 

and 

𝑏2 =∑𝑈𝑃𝑖 Δ𝑡𝑃𝑖 + 𝑝
𝑑

𝑑𝑝
(∑𝑈𝑃𝑖 Δ𝑡𝑃𝑖

𝑛

𝑖=1

) +∑𝑈𝑆𝑖 Δ𝑡𝑆𝑖 + 𝑝
𝑑

𝑑𝑝
(∑𝑈𝑆𝑖  Δ𝑡𝑆𝑖

𝑛

𝑖=1

)

𝑛

𝑖=1

𝑛

𝑖=1

 , 

 

(52) 

and where the differential terms are given by 

𝑝
𝑑

𝑑𝑝
(∑𝑈𝑃𝑖 Δ𝑡𝑃𝑖

𝑛

𝑖=1

) = 𝑝∑
𝑑𝑈𝑃𝑖
𝑑𝑝

 Δ𝑡𝑃𝑖 +

𝑛

𝑖=1

𝑝2∑𝑈𝑃𝑖
2  Δ𝑡𝑃𝑖

𝑛

𝑖=1

 

 

(53) 

and 

𝑝
𝑑

𝑑𝑝
(∑𝑈𝑆𝑖  Δ𝑡𝑆𝑖

𝑛

𝑖=1

) = 𝑝∑
𝑑𝑈𝑆𝑖
𝑑𝑝

 Δ𝑡𝑆𝑖 +

𝑛

𝑖=1

𝑝2∑𝑈𝑆𝑖  Δ𝑡𝑖

𝑛

𝑖=1

 . 

 

(54) 

Tsvankin and Thomsen (1994) adapted for VTI media and found 

lim
𝑝→0

𝑈𝑃𝑖 = 𝑣𝑃2𝑖
2 = 𝑣𝑃0𝑖

2 (1 + 2𝛿𝑖) 

 

(55) 

and 

lim
𝑝→0

𝑈𝑆𝑖 = 𝑣𝑆2𝑖
2 = 𝑣𝑆0𝑖

2 (1 + 2𝜎𝑖) . 

 

(56) 

and they also found  

lim
𝑝→0

1

𝑝

𝑑𝑈𝑃𝑖
𝑑𝑝

= lim
𝑝→0

𝑑2𝑈𝑃𝑖
𝑑𝑝2

= 8𝑣𝑃0𝑖
4 (𝜖𝑖 − 𝛿𝑖)

(

 
 
1 +

2𝛿𝑖

1 −
𝑣𝑆0𝑖
2

𝑣𝑃0𝑖
2
)

 
 

 

 

(57) 

and 
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lim
𝑝→0

1

𝑝

𝑑𝑈𝑆𝑖
𝑑𝑝

= lim
𝑝→0

𝑑2𝑈𝑆𝑖
𝑑𝑝2

= −8𝑣𝑆0𝑖
4  𝜎𝑖

(

 
 
1 +

2𝛿𝑖

1 −
𝑣𝑆0𝑖
2

𝑣𝑃0𝑖
2
)

 
 
 . 

 

(58) 

For 𝑘 = 1, c2 can be described by 

𝑐2 =
1

6
lim
𝑝→0

𝑑3𝑥𝑃
𝑑𝑥3

 , 

 

(59) 

where 

𝑑3𝑥𝑃
𝑑𝑥3

=
𝑑

𝑑𝑝
(
𝑑

𝑑𝑝
(
𝑑𝑥𝑃
𝑑𝑝

𝑑𝑝

𝑑𝑥
)
𝑑𝑝

𝑑𝑥
)
𝑑𝑝

𝑑𝑥
 , 

 

(60) 

which is the same as 

𝑑3𝑥𝑃
𝑑𝑥3

=
𝐵1 [3𝐵2 + 𝑝

𝑑
𝑑𝑝
𝐵2 +

𝑑
𝑑𝑝
(𝑝2𝐵3)] − 𝐵4(2𝐵5 + 𝑝 𝐵2 + 𝑝

2𝐵3)

𝐵1
5  , 

 

(61) 

where the coefficients 𝐵1, 𝐵2, 𝐵3, 𝐵4 and 𝐵5 are 

𝐵1 = 𝑒𝑃 + 𝑝 𝑓𝑃 + 𝑒𝑆 + 𝑝 𝑓𝑆 , 
 

(62) 

𝐵2 = 𝑒𝑆 𝑔𝑃 − 𝑒𝑃 𝑔𝑆 , 
 

(63) 

𝐵3 = 𝑓𝑆 𝑔𝑃 − 𝑓𝑃 𝑔𝑆 , 
 

(64) 

𝐵4 = 𝑓𝑃 + 𝑝 𝑔𝑃 + 2𝑓𝑆 + 𝑝 𝑔𝑆 

 

(65) 

and 

𝐵5 = 𝑒𝑆 𝑓𝑃 − 𝑒𝑃 𝑔𝑓𝑆 , 
 

(66) 

and where the coefficients 𝑒, 𝑓 and 𝑔 are described as 

𝑒 =∑ 𝑈𝑖 Δ𝑡𝑖

𝑛

𝑖=0

 , 

 

(67) 

𝑓 =
𝑑𝑒

𝑑𝑝
=
𝑑

𝑑𝑝
∑𝑈𝑖  Δ𝑡𝑖 =

𝑛

𝑖=0

∑
𝑑𝑈𝑖
𝑑𝑝

 Δ𝑡𝑖

𝑛

𝑖=0

+ 𝑝∑𝑈𝑖
2 Δ𝑡𝑖

𝑛

𝑖=0

 , (68) 
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and 

𝑔 =
𝑑𝑓

𝑑𝑝
=∑𝑈𝑖

2 Δ𝑡𝑖 =

𝑛

𝑖=0

∑
𝑑2𝑈𝑖
𝑑𝑝2

 Δ𝑡𝑖

𝑛

𝑖=0

+ 3𝑝∑𝑈𝑖
2
𝑑𝑈𝑖
𝑑𝑝

 Δ𝑡𝑖

𝑛

𝑖=0

+ 𝑝2∑𝑈𝑖
3 Δ𝑡𝑖

𝑛

𝑖=0

 . 

  

(69) 

From Equations 55 and 56 and for the limit of 𝑝 → 0, it is possible to find that 

lim
𝑝→0

𝑒𝑃 =∑𝑣𝑃2𝑖
2  Δ𝑡𝑃0𝑖

𝑛

𝑖=0

= 𝑉𝑃2
2  𝑡𝑃0 , 

 

(70) 

lim
𝑝→0

𝑒𝑆 =∑𝑣𝑆2𝑖
2  Δ𝑡𝑆0𝑖

𝑛

𝑖=0

= 𝑉𝑆2
2  𝑡𝑆0  , 

 

(71) 

and 

lim
𝑝→0

𝑓𝑃 = lim
𝑝→0

𝑓𝑆 =0 . 

 

(72) 

Also, that 

lim
𝑝→0

𝑔𝑃 = lim
𝑝→0

∑𝑈𝑃𝑖
2  Δ𝑡𝑃𝑖

𝑛

𝑖=0

+ lim
𝑝→0

∑
𝑑2𝑈𝑃𝑖
𝑑𝑝2

 Δ𝑡𝑃𝑖

𝑛

𝑖=0

 

 

(73) 

and 

lim
𝑝→0

𝑔𝑠 = lim
𝑝→0

∑𝑈𝑆𝑖
2  Δ𝑡𝑆𝑖

𝑛

𝑖=0

+ lim
𝑝→0

∑
𝑑2𝑈𝑆𝑖
𝑑𝑝2

 Δ𝑡𝑆𝑖

𝑛

𝑖=0

 , 

 

(74) 

and that they can also be respectively described as 

lim
𝑝→0

𝑔𝑃 =∑𝑣𝑃2𝑖
4  Δ𝑡𝑃0𝑖

𝑛

𝑖=0

+∑8𝑣𝑃0𝑖
4 (𝜖𝑖 − 𝛿𝑖)

(

 
 
1 +

2𝛿𝑖

1 −
𝑣𝑆0𝑖
2

𝑣𝑃0𝑖
2
)

 
 
 Δ𝑡𝑃𝑖

𝑛

𝑖=0

 

 

(75) 

and 
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lim
𝑝→0

𝑔𝑆 =∑𝑣𝑆2𝑖
4  Δ𝑡𝑆0𝑖

𝑛

𝑖=0

+∑−8𝑣𝑆0𝑖
4  𝜎𝑖

(

 
 
1 +

2𝛿𝑖

1 −
𝑣𝑆0𝑖
2

𝑣𝑃0𝑖
2
)

 
 
 Δ𝑡𝑃𝑖 .

𝑛

𝑖=0

 

 

(76) 

Replacing Equations 70 and 71 into Equation 76, the 𝑐2 becomes 

𝑐2 =
1

6
lim
𝑝→0

𝑑3𝑥𝑃
𝑑𝑥3

= lim
𝑝→0

𝑒𝑆 𝑔𝑃 − 𝑒𝑃 𝑔𝑆
2(𝑒𝑃 + 𝑒𝑆)4

 , 

 

(77) 

and 𝑐2 can also be written as 

𝑐2 =
1

2
(
𝑄1
𝑄3
−
𝑄2
𝑄4
) , 

 

(78) 

where 

𝑄1 = 𝑉𝑆2
2  𝑡𝑆0∑

{
 
 

 
 

Δ𝑡𝑃0𝑖  𝑣𝑃0𝑖
4

[
 
 
 
 

(1 + 2𝛿𝑖)
2 + 8(𝜖𝑖 − 𝛿𝑖)

(

 
 
1 +

2𝛿𝑖

1 +
𝑣𝑆0𝑖
2

𝑣𝑃0𝑖
2
)

 
 

]
 
 
 
 

}
 
 

 
 𝑛

𝑖=0

 , 

 

(79) 

 

 

𝑄2 = −𝑉𝑃2
2  𝑡𝑃0∑

{
 
 

 
 

Δ𝑡𝑆0𝑖  𝑣𝑆0𝑖
4

[
 
 
 
 

(1 + 2𝜎𝑖)
2 + 8𝜎𝑖

(

 
 
1 +

2𝛿𝑖

1 +
𝑣𝑆0𝑖
2

𝑣𝑃0𝑖
2
)

 
 

]
 
 
 
 

}
 
 

 
 𝑛

𝑖=0

 , 

 

(80) 

 

 

𝑄3 = 𝑉𝑃𝑛2
2  𝑡𝑃0 + 𝑉𝑆𝑛2

2  𝑡𝑆0 , 
 

(81) 

and 

𝑄4 = 𝑉𝑃2
2  𝑡𝑃0 + 𝑉𝑆2

2  𝑡𝑆0 . 
 

(82) 

 Replacing the Equations from 36 to 39 into the extended Equation 49 gives 

𝑐0 =∑𝑉𝑃2𝑖
2  Δ𝑡𝑃0𝑖

𝑛

𝑖=1

(∑𝑉𝑃2𝑖
2  Δ𝑡𝑃0𝑖

𝑛

𝑖=1

+∑𝑉𝑆2𝑖
2  Δ𝑡𝑃0𝑖

𝑛

𝑖=1

) .⁄  (83) 
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Replacing Equations 37 and 38 into the extended Equation 78 gives 

𝑐2 = {(∑𝑉𝑆2𝑖
2  Δ𝑡𝑆0𝑖

𝑛

𝑖=1

) [∑𝑉𝑃2𝑖
2  Δ𝑡𝑃0𝑖

𝑛

𝑖=1

(1 + 8𝜂𝑖)]

− (∑𝑉𝑃2𝑖
2  Δ𝑡𝑃0𝑖

𝑛

𝑖=1

) [∑𝑉𝑆2𝑖
2  Δ𝑡𝑆0𝑖

𝑛

𝑖=1

(1 + 8𝜁𝑖)]} 

×
1

2
(∑𝑉𝑃2𝑖

2  Δ𝑡𝑃0𝑖 +∑𝑉𝑆2𝑖
2  Δ𝑡𝑆0𝑖

𝑛

𝑖=1

𝑛

𝑖=1

)

−4

 .  

 

(84) 

 Replacing Equations 9, 11 and from 15 to 22 into Equations 83 and 84, and 

introducing the parameters 

𝜂𝑒𝑓𝑓 =
1

8𝑡𝑃0 𝑉𝑃2
4 [∑  𝑉𝑃2𝑖

4

𝑛

𝑖=1

(1 + 8𝜂𝑖)Δ𝑡𝑃0𝑖 − 𝑡𝑃0 𝑉𝑃2
4 ] 

 

(85) 

and 

𝜁𝑒𝑓𝑓 =
1

8𝑡𝑆0 𝑉𝑆2
4 [𝑡𝑆0 𝑉𝑆2

4 −∑ 𝑉𝑆2𝑖
4

𝑛

𝑖=1

(1 − 8𝜁𝑖)Δ𝑡𝑆0𝑖] , 

 

(86) 

results in 

𝑐0 =
𝛾𝑒𝑓𝑓

1 + 𝛾𝑒𝑓𝑓
 

 

(87) 

and 

𝑐2 =
𝛾𝑒𝑓𝑓(1 + 𝛾0)

2𝑡𝐶0
2  𝑉𝐶2

2  𝛾0(1 + 𝛾𝑒𝑓𝑓)
3 [𝛾0 𝛾𝑒𝑓𝑓 − 1 + 8(𝜂𝑒𝑓𝑓 𝛾0 𝛾𝑒𝑓𝑓 + 𝜁𝑒𝑓𝑓)] . 

 

(88) 

 Li and Yuan (2003) verified that 𝜂𝑒𝑓𝑓, which is the effective anisotropic parameter for 

a P-wave in a multilayered media, is the same introduced by Alkhalifah and Tsvankin (1995). 

They also verified that 𝜁𝑒𝑓𝑓 is the corresponding parameter for vertical S-wave in a layered 

VTI media. Hence, 𝜂𝑒𝑓𝑓 can be reduced to 𝜂 and 𝜁𝑒𝑓𝑓 can be reduced to 𝜁, for a single-layered 

VTI medium. Then, replacing Equations 40 and 41 into Equation 88, the latter is reduced to 
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𝑐2 =
𝛾𝑒𝑓𝑓(1 + 𝛾0)

2𝑡𝐶0
2  𝑉𝐶2

2  𝛾0(1 + 𝛾𝑒𝑓𝑓)
3 [𝛾0 𝛾𝑒𝑓𝑓 − 1 + 8𝛾𝑒𝑓𝑓 𝜂(𝛾0  + 𝛾𝑒𝑓𝑓 )] . 

 

(89) 

In a case for a layered isotropic medium, Li and Yuan (2003) considered 

𝜂𝑒𝑓𝑓 =
1

8𝑡𝑃0 𝑉𝑃2
4 [∑  𝑉𝑃2𝑖

4

𝑛

𝑖=1

Δ𝑡𝑃0𝑖 − 𝑡𝑃0 𝑉𝑃2
4 ] 

 

(90) 

and 

𝜁𝑒𝑓𝑓 =
1

8𝑡𝑆0 𝑉𝑆2
4 [𝑡𝑆0 𝑉𝑆2

4 −∑ 𝑉𝑆2𝑖
4

𝑛

𝑖=1

Δ𝑡𝑆0𝑖] . 

 

(91) 

Li and Yuan (2003) found that for this case, 𝜂𝑒𝑓𝑓 and 𝜁𝑒𝑓𝑓 control respectively the 

residual effects on P-waves and S-waves caused by layering. Therefore, to disregard these 

effects, the Equation 89 can be reduced to 

𝑐2 =
𝛾𝑒𝑓𝑓(1 + 𝛾0)(𝛾0 𝛾𝑒𝑓𝑓 − 1)

2𝑡𝐶0
2  𝑉𝐶2

2  𝛾0(1 + 𝛾𝑒𝑓𝑓)
3  . 

 

(92) 

 Working with the generalized equation proposed by Tsvankin and Thomsen (1994) for 

𝑡𝐶, the converted wave moveout which suffered the conversion at the bottom of the 𝑛-th layer 

and emerged at the offset 𝑥, it is found that 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 +

𝐴4 𝑥
4

1 + 𝐴5 𝑥2
 . 

 

(93) 

 To find the non-independent parameter 𝐴4, the development proposed by Tsvankin 

and Thomsen (1994) and Li and Yuan (2003) must be followed. Initially considering 

𝐴4 = 𝑡𝐶0𝑉𝐶2
4 − [∑(𝐻𝑃𝑖 + 𝑣𝑃2𝑖

4 )

𝑛

𝑖=1

Δ𝑡𝑃0𝑖 +∑(𝐻𝑆𝑖 + 𝑣𝑆2𝑖
4 )

𝑛

𝑖=1

Δ𝑡𝑆0𝑖] 4𝑡𝐶0
3 𝑉𝐶2

8⁄  , 

 

(94) 

where 
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𝐻𝑃𝑖 = 8𝑣𝑃2𝑖
4  (𝜖𝑖 − 𝛿𝑖)(1 +

2𝛿𝑖

1 −
1
𝛾0𝑖
2

) 

  

(95) 

and 

𝐻𝑆𝑖 = −8𝑣𝑆2𝑖
4  𝜎𝑖 (1 +

2𝛿𝑖

1 −
1
𝛾0𝑖
2

) . 

 

(96) 

 Replacing Equations from 37 to 39 into Equations 95 and 96, it is possible to obtain 

𝐻𝑃𝑖 = 8𝑣𝑃2𝑖
4  𝜂𝑖 

 

(97) 

and 

𝐻𝑆𝑖 = −8𝑣𝑆2𝑖
4  𝜁𝑖  . 

 

(98) 

 Introducing the definitions of Equation 85 and 86 respectively into Equations 97 and 

98 results in 

∑(𝐻𝑃𝑖 + 𝑣𝑃2𝑖
4 )Δ𝑡𝑃0𝑖

𝑛

𝑖=1

= (1 − 8𝜂𝑒𝑓𝑓)𝑡𝑃0 𝑉𝑃2
4  

 

(99) 

and 

∑(𝐻𝑆𝑖 + 𝑣𝑆2𝑖
4 )Δ𝑡𝑆0𝑖

𝑛

𝑖=1

= (1 − 8𝜁𝑒𝑓𝑓)𝑡𝑆0 𝑉𝑆2
4  . 

 

(100) 

 With the replacement of the Equations 99 and 100 into Equation 94, it is possible to 

obtain 

𝐴4 =
𝑡𝐶0𝑉𝐶2

4 − [(1 − 8𝜂𝑒𝑓𝑓)𝑡𝑃0 𝑉𝑃2
4 + (1 − 8𝜁𝑒𝑓𝑓)𝑡𝑆0 𝑉𝑆2

4 ]

4𝑡𝐶0
3  𝑉𝐶2

8  . 

 

(101) 
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 Replacing and rearranging the parameters 𝑉𝐶2, 𝑉𝑃2, 𝑉𝑆2, 𝑡𝐶0, 𝑡𝑃0 and 𝑡𝑆0 into Equation 

101 give 

𝐴4 =
(𝛾0 𝛾𝑒𝑓𝑓 − 1)

2
+ 8(1 + 𝛾0)(𝜂𝑒𝑓𝑓 𝛾0 𝛾𝑒𝑓𝑓

2 − 𝜁𝑒𝑓𝑓)

4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 ( 1 + 𝛾𝑒𝑓𝑓)
2  . 

 

(102) 

 The non-independent coefficient 𝐴5 is given by 

𝐴5 =
𝐴4

1
𝑉𝑃ℎ
2 − 

1
𝑉𝐶2
2  
 , 

 

(103) 

where 𝑉𝑃ℎ is the horizontal P-wave velocity. 

Combining the parameters 𝜂𝑒𝑓𝑓, 𝛾𝑒𝑓𝑓, 𝛾0 and 𝜁𝑒𝑓𝑓 gives 

𝜒𝑒𝑓𝑓 = 𝜂𝑒𝑓𝑓 𝛾0 𝛾𝑒𝑓𝑓
2 − 𝜁𝑒𝑓𝑓 . 

 

(104) 

 The Equation 104, for a single VTI layer, can be reduced to 

𝜒 = 𝜂 𝛾𝑒𝑓𝑓
2 (𝛾0 − 1) . 

  

(105) 

Replacing Equation 105 into Equation 102 results in 

𝐴4 =
(𝛾0 𝛾𝑒𝑓𝑓 − 1)

2
+ 8𝜒𝑒𝑓𝑓(1 + 𝛾0)

4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 ( 1 + 𝛾𝑒𝑓𝑓)
2  . 

 

(106) 

Li and Yuan (2003) suggested an empirical relation between 𝜁𝑒𝑓𝑓 and 𝜒𝑒𝑓𝑓, given by 

𝑉𝑃ℎ = 𝑉𝑃2√1 + 2𝜂 , 
 

(107) 

and where it can be approximated to 

𝑉𝑃ℎ = 𝑉𝑃2√1 +
2𝜒𝑒𝑓𝑓

 𝛾𝑒𝑓𝑓
2 (𝛾0 − 1)

 . 

 

(108) 

 The Equation 108 is a good approximation for layered media, even being considered 

only for single VTI media. Thus, replacing Equations 106 and 108 into Equations 33 and 103 

results in 
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𝐴5 =
𝐴4 𝑉𝐶2

2  𝛾𝑒𝑓𝑓(1 + 𝛾0 )[(𝛾0 − 1)𝛾𝑒𝑓𝑓
2 + 2𝜒𝑒𝑓𝑓]

𝛾𝑒𝑓𝑓
2 (𝛾0 − 1)(1 − 𝛾0 𝛾𝑒𝑓𝑓) − 2𝛾𝑒𝑓𝑓 𝜒𝑒𝑓𝑓(1 + 𝛾0)

 . 

 

(109) 

 For the case of a single VTI layer, it is possible to obtain an 𝐴4, described as 

𝐴4 =
−1

𝑡𝐶0
2  𝑉𝐶2

2 ( 1 + 𝛾𝑒𝑓𝑓)
2 [
 2𝜂 𝛾𝑒𝑓𝑓

2 (𝛾0
2 − 1)

𝛾0
+
 (𝛾2

2 − 1)2

4𝛾0
] . 

 

(110) 

However, for isotropic media, 𝛾𝑒𝑓𝑓 = 𝛾0 and 𝜒𝑒𝑓𝑓 = 0. Thus, the coefficients 𝐴4 and 𝐴5 can 

be reduced to 

𝐴4 =
−( 𝛾0 − 1)

2

4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0
 

 

(111) 

and 

𝐴5 =
𝐴4 𝑉𝐶2

2  𝛾0
1 − 𝛾0

 . 

 

(112) 

As the approximations for isotropic cases showed good results in previous works, even 

a simplified version is a reliable approximation to be considered with three parameters. 

However, it does not consider a difference of datum between source and receiver, which leads 

to the use of the relation proposed by Wang and Pham (2001). Initially, they consider that the 

total travel-time is given by 

𝑡 = 𝑡𝑊𝐷 + 𝑡𝐿𝑆 , 
 

(113) 

where 𝑡𝑊𝐷 is the one-way travel-time of the P-wave ray along the water depth, and the 𝑡𝐿𝑆 is 

the travel-time of the P-wave from the bottom of the ocean to the reflection point and then 

reflected as S-wave to the receptor. The reflection point as the bottom of the 𝑛-th layer is 

considered, once Wang and Pham (2001) do not consider stratified media as their initial 

premises. 

 Considering the same relations applied to the distances and using the Pythagoras 

theorem, it is possible to find 

𝑥𝑊𝐷
2 = (𝑡𝑊𝐷 𝑉𝑊𝐷)

2 = (𝑥 − 𝑥𝐿𝑆)
2 + 𝑧𝑊𝐷

2  , 
 

(114) 



72 

 

where 𝑥𝑊𝐷 is the distance that the P-wave ray traveled until reaching the bottom of the ocean, 

𝑉𝑊𝐷 is the velocity of the P-wave in the water, 𝑥𝐿𝑆 is offset between the point at which the P-

wave reached the bottom of the ocean and the receiver which received the S-wave, and 𝑧𝑊𝐷 is 

the water depth. 

 Rearranging the Equation 114 gives 

𝑡𝑊𝐷 =
√(𝑥 − 𝑥𝐿𝑆)2 + 𝑧𝑊𝐷

2

𝑉𝑊𝐷
 . 

 

(115) 

 The conventional static shift approach assumes 𝑥𝐿𝑆 equal to 𝑥. However, considering a 

straight ray path from the source until reaching the reflection point can be written as 

𝑥𝐿𝑆 =
𝑥

1 +
𝑧𝑊𝐷
𝑡𝐶0 𝑉𝐶2

 . 

 

(116) 

 For a stratified medium and with the consideration of a different ray inclination in the 

water, the relation becomes 

𝑥𝐿𝑆 =
𝑥

1 +
𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2

 . 

 

(117) 

 Distinctly from what Wang and Pham (2001) proposed, it can be considered for ultra-

deep reservoirs as 

𝑥 = 𝑥𝐿𝑆 (1 +
𝑧𝑊𝐷 𝑉𝑊𝐷

𝑡𝐶0 𝑉𝐶2
2 ) . 

 

(118) 

 Replacing the Equation 118 into Equation 93 gives 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷

𝑡𝐶0 𝑉𝐶2
2 )

2

+
𝐴4 𝑥

4

1 + 𝐴5 𝑥2 (1 +
𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2 (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷

𝑡𝐶0 𝑉𝐶2
2 )

4

 . 

 

(119) 

As the depth increases, the hyperbolic term suffers less influence by the shifting, 

which allows to disregard it for the term 𝑥2 𝑉𝐶2
2⁄ , and reduce the Equation 119 to 
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𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 +

𝐴4 𝑥
4

1 + 𝐴5 𝑥2 (1 +
𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2 (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷

𝑡𝐶0 𝑉𝐶2
2 )

4

 . 

 

(120) 

Replacing Equations 111 and 112 into Equation 120 results in 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 +

−(𝛾0 − 1)
2 𝑥4  (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
4

4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 [1 −
𝛾0 𝑉𝐶2

2 (𝛾0 − 1)2 𝑥2

4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0(1 − 𝛾0)
(1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2

]

 , 

 

(121) 

and after that, distributing the terms gives 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2

+

−(𝛾0 − 1)
2 𝑥4  (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
4

[4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 −
(4𝑡𝐶0

2  𝑉𝐶2
4  𝛾0)𝛾0 𝑉𝐶2

2 (𝛾0 − 1)2 𝑥2

4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0(1 − 𝛾0)
(1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2

]

 , 

 

(122) 

and then it can be rewritten as 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 +

−(𝛾0 − 1)
2 𝑥4  (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
4

[4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 −
𝛾0 𝑉𝐶2

2 (𝛾0 − 1)(𝛾0 − 1) 𝑥2

(1 − 𝛾0)
(1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2

]

 , 

 

(123) 

and then as 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 +

−(𝛾0 − 1)
2 𝑥4  (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
4

[4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 +
𝛾0 𝑉𝐶2

2 (1 − 𝛾0)(𝛾0 − 1) 𝑥2

(1 − 𝛾0)
(1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2

]

 . 

 

(124) 

Simplifying Equation 124 gives 

𝑡𝐶
2 = 𝑡𝐶0

2 +
𝑥2

𝑉𝐶2
2 +

−(𝛾0 − 1)
2 𝑥4  (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
4

[4𝑡𝐶0
2  𝑉𝐶2

4  𝛾0 + 𝛾0 𝑉𝐶2
2 (1 − 𝛾0) 𝑥2 (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2

]

 , 

 

(125) 
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and rearranging it gives 

𝑡 = √𝑡𝐶0
2 +

𝑥2

𝑉𝐶2
2 +

−(𝛾0 − 1)2 𝑥4  (1 +
𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
4

𝛾0 𝑉𝐶2
2 [4𝑡𝐶0

2  𝑉𝐶2
2 + (1 − 𝛾0) 𝑥2 (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡𝐶0 𝑉𝐶2

2 )
2

]

 . 

 

(126) 

 Replacing and introducing the generic parameters result in 

𝑡 = √𝑡0
2 +

𝑥2

𝑉2
+

−(𝛾 − 1)2 𝑥4  (1 +
𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡0 𝑉2

)
4

𝛾 𝑉2 [4𝑡0
2 𝑉2 + (1 − 𝛾) 𝑥2 (1 +

𝑧𝑊𝐷 𝑉𝑊𝐷
𝑡0 𝑉2

)
2

]

 , 

 

(127) 

an approximation with five parameters, three parameters to be recovered and two a priori 

parameters 𝑧𝑊𝐷 and 𝑉𝑊𝐷. 

 

3.2 Other approximations 

Each nonhyperbolic approximation used in this thesis has idiosyncratic characteristics, 

and an additional parameter which aims to perform a better fit considering different premises. 

These approximations were already previously tested for different models and problems by 

Zuniga (2015, 2017 and 2018) and Zuniga et al. (2015, 2016, 2017, 2018, 2019a, 2019b and 

2019c). 

 Eight approximations were chosen for this study. The first one is the hyperbola 

equation, proposed by Dix (1955). 

𝑡 = √𝑡0
2 +

𝑥2

𝑣2
 , 

 

 

(128) 

where 𝑥 is the vector of offsets between source and receiver, 𝑡0 is the zero-offset travel-time 

and 𝑣 is the RMS (Root Mean Square) velocity. 

 However, this approximation is treated in this thesis only for a comparison effect, due 

to the fact it is insufficient for the strong nonhyperbolic conditions studied, once it considers 

only hyperbolic events. 
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The shifted hyperbola (Malovichko, 1978) has the proposition of controlling the effect 

of large offsets in inhomogeneous media using the S parameter. This equation was also 

studied and derived by Castle (1988 and 1994) and de Bazelaire (1988), and more recently 

tested for VTI media (Zuniga et al., 2015), for strong heterogeneity (Zuniga, 2015), and for 

offshore OBN data (Zuniga, 2017; Zuniga et al., 2015, 2016, 2017, 2018 and 2019a). The 

shifted hyperbola can be described as 

𝑡 = 𝑡0
2 (1 −

1

𝑆
) +

1

𝑆
√𝑡0

2 +
𝑆𝑥2

𝑣2
 ,  

 

 

(129) 

where S is the heterogeneity parameter which depends on 𝜇4 and 𝜇2 by the relation 

𝑆 =
𝜇4

𝜇2
2 . 

 

(130) 

Here, 𝜇𝑗 (𝑗 = 2, 4) is the 𝑗-th velocity momentum described by 

𝜇𝑗=∑𝑡𝑘𝑣𝑘
𝑗

𝑛

𝑘=1

∑𝑡𝑘

𝑛

𝑘=1

⁄  , 

 

 

(131) 

where 𝑣𝑘 is the interval velocity of the 𝑘-th layer and 𝑡𝑘 is the travel-time of the 𝑘-th layer. 

The next approximation was proposed by Slotboom (1990) to perform the velocity 

analysis for a nonhyperbolic behaviour from conversion of a P-wave to a vertical S-wave. 

Once it has no additional parameter to control the nonhyperbolicity in a better way, it brought 

a less accurate set of results in previous works (Zuniga, 2015; Zuniga et al., 2019), even 

though it shows a low processing time (Zuniga, 2017). 

𝑡 =
𝑡0
2
+ √

𝑡0
2

2
+
𝑥2

2𝑣2
 

 

 

(132) 

However, this approximation is presented just to explain the evolution of the 

development concerning the nonhyperbolic approximations, once it was tested in previews 

works and has never shown significant results for complex models (Zuniga et al., 2015 and 

2016; Zuniga, 2017). 

The following approximation is a very popular equation, broadly used in the 

petroleum industry. It was proposed by Alkhalifah and Tsvankin (1995) to deal with 
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nonhyperbolicity originated in VTI (Vertical Transversal Isotropy) media by anisotropy. This 

approximation was strongly tested by Zuniga (2015 and 2017). 

𝑡 = √𝑡0
2 +

𝑥2

𝑣2
−

2η𝑥4

𝑣2[𝑡0
2𝑣2 + (1 + 2η)𝑥2]

  , 

 

 

(133) 

where η parameter quantifies the nonhyperbolicity of the event. This parameter represents a 

determined anisotropy and it is function of the Thomsen anisotropic parameters (Thomsen, 

1986) described as 

η =
𝜀 − 𝛿

1 + 2𝛿
 , 

 

(134) 

where 𝜀 quantifies the difference between the wave velocities along the symmetry axis and 

perpendicular to the symmetry axis, and 𝛿 represents the propagation of P-wave for angles 

close to the symmetry axis. 

 

Similar to the shifted hyperbola, the next equation proposes to use the heterogeneity 

parameter, but in this case, it aims to use the fractional condition of the approximation to 

obtain a more accurate result of the velocity, once it is more related to the S parameter. 

However, for this approximation, the authors (Ursin and Stovas, 2006) proposed that the S 

parameter is expressed in a quasi-acoustic case as a function of the Thomsen anisotropic 

parameters (Thomsen, 1986). For this reason, it showed a better result concerning the velocity 

recovery, even when, on the other hand, the topology of the function is sensitive to the model 

variation (Zuniga et al., 2018, 2019b and 2019c).  

𝑡 = √𝑡0
2 +

𝑥2

𝑣2
−

(𝑆 − 1)𝑥4

4𝑣4 (𝑡0
2 +

(𝑆 − 1)
2

𝑥2

𝑣2
)
 

 

 

(135) 

The same problem was observed for the approximation proposed by Blias (2009), 

which also uses the S parameter of heterogeneity, in a similar way to the equations proposed 

by Malovichko (1978) and by Ursin and Stovas (2006). To develop this approximation, the 

author performed several numerical tests related to the walkway vertical seismic profile 

(VSP). In this case, the approximation was very sensitive to the additional parameter and 
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velocity (Zuniga et al., 2018, 2019b and 2019c), however, it had a very complex topology and 

was strongly dependent on the model. 

𝑡 =
1

2
√𝑡0

2 +
1 − √𝑆 − 1

𝑣2
𝑥2 +

1

2
√𝑡0

2 +
1 + √𝑆 − 1

𝑣2
𝑥2 

 

 

(136) 

Different from the other approximations, the next one, proposed by Muir and 

Dellinger (1985), considers the anellipticity parameter (f) to deal with the nonhyperbolicity 

generated by the variation of the wavefront when it varies from a spherical shape and tends to 

the elliptical shape (Fomel and Grechka (2000). The problem observed before for this 

equation is that the global and local minimum regions are too similar, which makes the search 

for the global minimum even harder (Zuniga, 2017). 

𝑡 = √𝑡0
2 +

𝑥2

𝑣2
−

𝑓∘(1 − 𝑓∘)𝑥4

𝑣2(𝑣2𝑡0
2 + 𝑓∘𝑥2)

 

 

 

(137) 

Different from all previous approximations in this work, the one proposed by Li and 

Yuan (2001), aims to consider the CP (Conversion Point) to control the effects of a 

nonhyperbolicity associated to the wave conversion. For this, the 𝛾 parameter is used as the 

nonhyperbolic parameter. 

𝑡 = √𝑡0
2 +

𝑥2

𝑣2
−
(𝛾 − 1)

𝛾𝑣2
(𝛾 − 1)𝑥4

4𝑡0
2𝑣2 + (𝛾 − 1)𝑥2

 , 

 

 

(138) 

where 𝛾 is the ratio between the squared P-wave stacking velocity 𝑣𝑃2 and the squared 

converted wave stacking velocity 𝑣𝐶2, written as 

𝛾 =
𝑣𝑃2
2

𝑣𝐶2
2 =

𝛾𝑒𝑓𝑓(1 + 𝛾0)

(1 + 𝛾𝑒𝑓𝑓)
 . 

 

(139) 

Here, 𝛾𝑒𝑓𝑓 is the relation between 𝛾2 and 𝛾0, given by  

𝛾𝑒𝑓𝑓 =
𝛾2
2

𝛾0
 , 

 

(140) 
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where 𝛾2 is the ratio between the stacking P-wave and stacking S-wave, and 𝛾0 is the ratio 

between P-wave velocity and S-wave velocity, which travel along the normal component. 

The parameter from Li and Yuan (2001) approximation was tested by Yuan (2002) for a 

maximum offset-depth ratio of 1.5 (x/z=1.5) and it brought results that stimulated several 

studies for the different applications of this approximation (Zuniga, 2015, 2017 and 2018; 

Zuniga et al., 2017, 2019a and 2019b). Yuan (2002) found, for this equation, the proper value 

of x/z is 2.7 in a heterogeneous isotropic media, however, it was found that, for OBN 

condition, the equation works very well for higher values of x/z (Zuniga, 2017; Zuniga et al., 

2019a). 
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4 MODELLING COMPLEX STRUCTURES AND GEOMETRIES 

 

 There are several different geological scenarios intended to model the offshore 

structures, and for this reason it is necessary to understand these different conditions. This 

work proposes to test five different models; three of them are ultra-deep carbonate reservoirs 

sealed by salt (pre salt), which were partially tested by Zuniga (2017), while the two new 

tested models are shallower reservoirs composed by sandstone and sealed by shale (post salt). 

The analysed data are both PP and PS reflection events from the interface between the salt 

base and the top of the reservoir. The three carbonate reservoirs were modelled using well log 

data from the pre salt from the Santos Basin, which provided the modelling performed by 

using stratigraphic and lithological information. For the two sandstone reservoirs, the 

modelling was performed to create fictional reservoirs inspired by post salt reservoirs from 

the Campos Basin. These two fictional models were generated aiming to test the 

nonhyperbolic multiparametric approximations in conditions which make them work on their 

thresholds, once this condition provides a RMS velocity much different than the real velocity, 

which was tested by Zuniga et al. (2018, 2019b and 2019c). 

 It is essential to use the P-wave velocity (Vp), S-wave velocity (Vs) and the ratio 

between the P-wave velocity and S-wave velocity (Vp/Vs) as the main elastic parameters to 

perform the tests proposed in this work, since it is necessary to recover the value of velocity 

by identifying the travel-time of the waves. For the two shallower models, the values of these 

parameters were based on the references which provide a set of physical parameters for 

different lithology obtained empirically for different conditions of depth and pressure (e.g. 

Han, 1986; Lucet, 1989; Geertsma, 1961; Jizba, 1991; Strandenes, 1991; Blangy, 1992; 

Cadoret, 1993; Yale and Jameison, 1994; Mavko et al., 2009). 

 Zuniga (2017) generated the complete velocity profile as a function of depth using the 

MATLAB Toolbox for ray tracing modelling proposed by Margrave (2000 and 2003). It was 

performed by using the ray tracing method aiming to define how each reflection event travels 

through the layers. However, once it is necessary to model structures with geometry of 

acquisition where there is a difference of datum between source and receiver, it is also 

necessary to use a more complex tool, as the software of 2D wave field modelling by finite 

differences proposed by Thorbecke and Draganov (2012). 
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4.1 Automated picking using spectral recomposition 

To perform the velocity analysis using the proposed method, it is necessary to extract 

the travel-time curve from the target reflection event (the PP and PS reflection events from the 

interface between the bottom of the salt and the top of the reservoir). For this reason, a 

technique to perform an automated pick of the travel-times from the seismogram trace by 

trace, even in the presence of significant random noise, is proposed. 

As the pre salt from the Santos Basin presents a very thick salt layer above the 

reservoir, there is a significant difference concerning the depth — and therefore concerning 

the arrival time — between the strongest reflections related to the interfaces above the 

reservoir and the one related to the target interface, the interface between bottom of the salt 

and the top of the reservoir. For this reason, it is easier to perform the travel-time pick for the 

target interface when it has less interference from other reflections of other interfaces. 

So, a technique capable of performing the inversion of the frequency spectrum for 

each trace aiming to recover the information of amplitude and frequency using the spectral 

recomposition approach (Tomasso et al., 2010; Cai et al., 2013) is proposed. It was performed 

before in different situations aiming only to recover this kind of information to obtain a better 

geological characterization (Tomasso et al., 2010; Cai et al., 2013). However, until now, it 

has not being applied to compare the wavelets and specifically to find a peak frequency of a 

random noise or of a signal. 

The seismic spectrum can be described as a sum of different Ricker components 

(Tomasso et al., 2010), described as 

𝑑(𝑓) ≈∑𝑎𝑖𝜓𝑖

𝑛

𝑖=1

(𝑚𝑖, 𝑓) . 

 

(141) 

The 𝑑(𝑓) is the spectrum of a seismic trace, 𝑓 is the frequency, and 𝑎1 and 𝑚1 are, 

respectively, the amplitude and the peak frequency of the 𝑖-th Ricker spectrum component, 

given by 

𝑅(𝑓) = 𝑎𝜓(𝑚, 𝑓) = 𝑎
𝑓2

𝑚2
𝑒𝑥𝑝 (−

𝑓2

𝑚2
) . 

 

(142) 
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With this description of the wavelet, it is possible to perform an inversion fitting the 

calculated frequency spectrum to the observed one of all wavelets found in a trace. Certainly, 

the frequency spectrum is found after a Fourier transform of the wavelets is performed in the 

analysed trace. The optimization algorithms used are going to be better described in 

subsequent chapters. 

So, for the first trace, the curve fitting of the calculated spectrum to all spectra of the 

frequencies found this way is performed; and then, with each pair of information of frequency 

and amplitude, they can be compared to each other and to the frequency used by the seismic 

source. With an automated comparison of the values of peak frequency and amplitude, and 

cross correlation among each wavelet, it is possible to find which of those spectra are related 

to the random noise or to the signal of the reflection. Once there is only one target signal 

related to the travel-time of the reflection on this trace and several related to the random noise, 

the spectrum of the signal must be different from all the other random noise spectra. That is 

the main reason to consider this technique to obtain only reflections well separated in time; 

otherwise, reflections too close to each other may be ill-picked. 

After finding the wavelet of the signal for the first trace, the technique does the same 

for the next trace; however, it considers some constraints to perform a more accurate picking. 

The first of the constraints is to consider the arrival time of a trace always higher than the 

previous one, once the next arrival must take more time to be received than the previous one. 

The second constraint is to compare the difference between the arrival time of the analysed 

trace and the arrival time of the previous trace. It is necessary to restrict the time of the target 

wavelet between the two arrival times around it, once it cannot be lower than the previous 

arrival time and higher than the next one. This difference limit can be set according to 

different kinds of models due to the fact some models can present a lithology which can 

generate a more horizontalized reflection event and therefore a narrower time window 

between the previous and the next trace. The third constraint is to compare the peak frequency 

and the amplitude and cross correlate the spectrum of the signal of the trace analysed to the 

previous trace. This constraint aims to compare the spectrum of the signal of the event in a 

trace to the previous one, once they must be very similar to each other and different from the 

random noise spectrum. All difference limits can be set according to the different 

characteristics of the medium, seismic source or kind of propagation (PP, ShSh, SvSv, SP or 

PS), once each of these characteristics can present different sets of arrival times and wavelets, 
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and therefore it is possible to restrict a specific area of the seismogram aiming to find the 

target information more quickly. 

The seismogram may also be muted on the parts in which the reflection event is not 

expected to appear. It is important to help the algorithm to find less wavelet to fit, decreasing 

the possibility of picking a wrong spectrum and increasing the processing time. However, it 

should be applied only in regions of the seismogram which certainly does not affect the target 

reflections; otherwise it could mute important information of the target reflection. 

After performing the technique for each trace and obtaining each frequency spectrum 

associated to the target reflection signal, it is possible, after performing the inverse Fourier 

transform for each trace, to find the arrival time of each wavelet of the reflection signal. With 

each arrival time of the reflection event, there is the travel-time curve of the same reflection 

event. That procedure was performed for each PP and PS reflection event of the interface 

between the bottom of the sealing layer and the top of the reservoir for each model, and the 

two reflection events (PP and PS) of each of the five models could be found (9.1 Appendix 

A). Then, it is possible to perform the velocity analysis by fitting the calculated travel-time 

curve to the observed one (extracted with this technique). 

 

4.1.1 PVO analysis to find critical reflection using spectral recomposition 

 It is possible to observe that, in cases where there is a critical reflection, the phase 

begins to significantly vary after the critical reflection. For this reason, it is proposed to apply 

the same technique used to perform the automated picking, but this time to extract the events 

with phase shifting. Once the travel-time curve is extracted, the same idea can be applied in a 

different way. So, another technique is proposed in this thesis, and this technique is based on 

performing the inversion of the spectrum of a trace using the Ricker spectrum as the 

calculated curve, which provides the information of the amplitude and peak frequency. 

However, in a condition where there is a phase shift, the Ricker wavelet is gradually distorted 

into its Hilbert transform, which is very similar to a semi-Gaussian wavelet, due to the fact of 

both being odd functions. Once the phase is getting shifted, the observed wavelet is becoming 

more disparate from the Ricker wavelet and becoming closer to a semi-Gaussian wavelet, 

which results in a higher global minimum value. It happens because the error of the calculated 

curve represented by the mathematical model of the Ricker spectrum starts to be fitted to a 
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wavelet closer to a semi-Gaussian wavelet. It happens because the Ricker wavelet spectrum is 

being used to calculate the spectrum of the wavelets in the traces. For this reason, it was 

expected that the trace with the highest global minimum value was related to the critical 

angle. This is very interesting for the PVO (Phase Variation with Offset) analysis, once it is 

possible to find the critical angle (CA) data driven and then find some elastic properties like 

Poison ratio when it is made for PP and SS reflection events of a layer. It can also be useful to 

calculate the velocity ratios for each studied layer and then, after finding the velocity of the 

first one, calculate the velocity of each underlying layer. In this work, it was tested for SvSv 

reflection events with different critical angles, aiming to find the critical angles of these 

events data driven. Four models were proposed to be tested: the first model with 37 degrees of 

critical angle; the second model is the same as the first one except that a semi-Gaussian 

wavelet was used rather than a Ricker wavelet; the third model presents 30 degrees of critical 

angle; and the fourth model with 44 degrees of critical angle. 

 In this study, it was possible to observe that the value of the global minimum error (the 

error between the calculated spectrum and the observed frequency spectrum) along each trace 

varies as it gets closer to the critical angle. The global minimum value increases abruptly as it 

reaches the CA and then abruptly decreases for the angles higher than the CA. It happens for 

the three models with different CA (37, 30 and 44 degrees). However, for the second model 

tested, the CA is related to the first lowest minimum value. It happens due to the Ricker 

wavelet used to calculate the spectrum being very similar to the first wavelets of the models 1, 

3 and 4, and when the wavelets start to become different from the Ricker spectrum they stop 

to fit as well. For the model 2, the opposite happens, once the first wavelets are semi-

Gaussian and are being calculated with a Ricker wavelet spectrum, so the error starts to 

decrease when the wavelets start to become more similar to the calculated Ricker wavelets. 

So, for any value of CA (with a Ricker wavelet), it may be explained by the fact that the phase 

variation gets more disparate from the Ricker wavelet shape as it gets closer to the critical 

point, and therefore, the error increases as the Ricker wavelet is considered for calculating the 

spectrum. So, in the CA, the worst fitting is observed. Therefore, the peak of maximum error 

is associated to the critical angle, and for higher and lower angles, it starts to decrease and 

show a better fitting. 

 The same is observed to the peak frequency value and the amplitude value (9.2 

Appendix B - Figure 284 and 285). But this time, for all the four models. The amplitude and 
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peak frequency have their highest values observed in the critical angle. However, for the 

amplitude, it is observed that, after the critical angle, its values decrease gradually, while for 

the peak frequency, the values decrease abruptly and then increase again, getting slightly 

more stable. For the frequency, the increase of the value can be possibly explained by 

interference from the refracted event which starts to get separated from the reflected one. For 

the Ricker wavelet, it was also tested for higher and lower critical angles. It showed the same 

behaviour of the global minimum, amplitude and frequency variations with the incident angle. 

When the same study was performed for a semi-Gaussian wavelet (Gaussian’s first derivative 

or Ricker’s integral), the value of the first minimum peak right before the maximum peak 

showed to be related to the critical angle rather than the maximum peak. However, the 

amplitude and the frequency showed the same behaviour shown by the Ricker wavelet with 

the same critical angle. 

 Additionally, it is important to prove and show how the reflection and the phase 

behave around the CA. For each trace (consequently each angle), the theoretical instant phase 

shows the angle when the phase changes for each model (9.2 Appendix B - Figure 286). 

Another way to show this is to theoretically calculate the reflection (RC) and the transmission 

(TC) coefficients using the Zoeppritz equations, once the RC reaches its maximum and 

becomes stable immediately after the critical angle, and the TC reaches its maximum value 

exactly in the CA (9.2 Appendix B - Figure 287, 288 and 289). 

  

4.2 Models to be studied 

 The first three models are conventionally found in the pre salt environment, a very 

thick salt sealing layer above a carbonate reservoir layer. However, the other two models 

tested are sandstone reservoirs sealed by shale, so a broader range of results can be found. For 

all the following models, the depth of the source is 5 metres, the number of receivers is 100, 

and the minimum offset between source and receiver, in the same way as the offset between 

receivers, is 150 metres. The five models used in this work present only vertical velocity 

variation, and not varying horizontally. 

 



85 

 

4.2.1 Model 1 

 For the first model, it is possible to observe a very conventional structure from the pre 

salt from Santos Basin, with more than 2000 metres of water depth and around 2000 metres of 

salt sealing the reservoir. This salt structure is composed by one anhydrite (CaSO4) layer 

between two halite (NaCl) layers. The anhydrite layer has higher density and higher P-wave 

and S-wave propagation than the other two salt layers (Figure 7). The receivers are coupled at 

2157 metres of depth on the bottom of the ocean and the salt layer begins at a depth of 2761 

metres and ends at the depth of 5172 metres, where the top of the carbonate reservoir is. The 

ray tracings of this model with the described geometry of acquisition are presented by the 

Figures 8 and 9, while the travel-time curves are represented by the Figures 10 and 11. 

 

Figure 7: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 1. 
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Figure 8: Ray tracing schematization of the PP reflection event from Model 1. 

 

 

 

Figure 9: Ray tracing schematization of the PS reflection event from Model 1. 
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Figure 10: Travel-time curve of the PP reflection event from Model 1. 

 

 

 

Figure 11: Travel-time curve of the PS reflection event from Model 1. 
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4.2.2 Model 2 

 The second model is also from pre salt from Santos Basin, and, as the first model, it 

presents a salt structure thicker than 2000 metres; however, in this case, the salt layer starts to 

appear at a depth of 3139 metres and ends at a depth of 5005 metres, where the top of the 

carbonate reservoir is. The main difference of this model in comparison to the previous one is 

that, in this case, in the salt structure, despite being composed by two halite layers and an 

anhydrite layer in between them, the anhydrite layer is much thicker (more than 1000 metres), 

while the halite layers are thinner (Figure 12). The receivers are coupled at a depth of 2101 

metres on the water bottom as it can be seen in the Figures 13 and 14. The reflection events of 

PP and PS waves are shown in Figures 15 and 16. 

 

Figure 12: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 2. 
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Figure 13: Ray tracing schematization of the PP reflection event from Model 2. 

 

 

 

Figure 14: Ray tracing schematization of the PS reflection event from Model 2. 
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Figure 15: Travel-time curve of the PP reflection event from Model 2. 

 

 

 

Figure 16: Travel-time curve of the PS reflection event from Model 2. 
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4.2.3 Model 3 

 Differently from the models shown previously, the third model presents a very 

peculiar characteristic concerning the salt structure: The halite layer is in between two 

anhydrite layers. The salt structure also presents a thinner total thickness, something around 

1500 metres, starting at 3590 metres of depth and the bottom of the salt reaching the top of 

the carbonate reservoir at 4949 metres of depth (Figure 17). This kind of velocity variation, 

with a velocity abnormally lower than it should be, found between two very dense salt 

structures, can cause a strong distortion on the ray tracing (Figures 18 and 19) and therefore 

generates a stronger nonhyperbolicity on the reflection events (Figures 20 and 21). The 

receivers are coupled at the ocean bottom, where they are at a depth of 2159 metres. 

 

Figure 17: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 3. 
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Figure 18: Ray tracing schematization of the PP reflection event from Model 3. 

 

 

 

Figure 19: Ray tracing schematization of the PS reflection event from Model 3. 
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Figure 20: Travel-time curve of the PP reflection event from Model 3. 

 

 

 

Figure 21: Travel-time curve of the PS reflection event from Model 3. 
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4.2.4 Model 4 

 The Model 4 is a conventional sandstone reservoir sealed by shale. This structure has a 

water depth of 2050 metres and a shallower reservoir in comparison to the other models. The 

depth of the top of the sealing layer is 3220 metres and the top of the reservoir is at a depth of 

3524 metres (Figure 22). For this case, the same application of OBN technology is 

considered, so the receivers are coupled at the ocean bottom, as it is shown by Figures 23 and 

24. Despite not being a complex stratigraphy or lithology, this model represents a challenge 

concerning the RMS velocity, once it has a very high offset-depth relation, which can also 

increase the nonhyperbolicity of the reflection events (Figures 25 and 26). 

 

 

Figure 22: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 4. 
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Figure 23: Ray tracing schematization of the PP reflection event from Model 4. 

 

 

 

Figure 24: Ray tracing schematization of the PS reflection event from Model 4. 
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Figure 25: Travel-time curve of the PP reflection event from Model 4. 

 

 

 

Figure 26: Travel-time curve of the PS reflection event from Model 4. 
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4.2.5 Model 5 

 Concerning the sealing structure, the Model 5 is very similar to the Model 4. However, 

the fifth model has a shallower reservoir than the others, with a water depth of 1052 metres, 

the sealing shale layer starting at a depth of 2357 metres and the total depth of the reservoir is 

2594 metres (Figure 27). Similarly to the Model 5, it is possible to observe the not so frequent 

variation of the inclination concerning the ray tracing (Figures 28 and 29). However, the fact 

that the target layer is so shallow for this geometry of acquisition, the RMS velocity can 

distort the reflection events even more (Figures 30 and 31). 

 

Figure 27: Velocity profiles of P wave, S wave, and Vp/Vs ratio related to the depths of the Model 5. 
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Figure 28: Ray tracing schematization of the PP reflection event from Model 5. 

 

 

 

Figure 29: Ray tracing schematization of the PS reflection event from Model 5. 
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Figure 30: Travel-time curve of the PP reflection event from Model 5. 

 

 

 

Figure 31: Travel-time curve of the PS reflection event from Model 5 
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5 COMPLEXITY ANALYSIS OF THE OBJECIVE FUNCTION 

 

5.1 Inverse problem 

 The mathematical inverse problem consists in obtaining, or calculating, the unknown 

cause of a known effect (Duarte, 2010; Aster, Borches and Thurber, 2012). It is necessary to 

know the precedence of the data to apply the inversion problem in an effective way, once the 

quality of the model analysis is dependent on the a priori information (Tarantola, 2005). 

In this work, the proposed inversion is based on the curve fit between the calculated 

curve with each approximation and the observed travel-time curve in the seismic record. The 

travel-times are the effect and, from them, it is possible to determine the cause — in other 

words, it is possible to reach the information necessary to characterize the model. 

 

5.2 Direct problem 

 The direct problem consists in mathematically calculating the effect of a known cause. 

It is related to the inverse problems, since it allows calculating an ensemble of effects 

generated by different models intended to represent a phenomenon, or perturbations in a 

single model (Duarte, 2010; Aster, Borches and Thurber, 2012). 

 It is proposed that the direct problem starts from the obtainment of the travel-times 

from a reflection PP or PS event making use of the ray tracing methods. The modelling was 

performed for multi-layered media, with large offsets between source and receivers, in 

offshore and ultra-depth water (depths larger than 1500 metres), and using the OBN 

technology to obtain converted waves. 

 

5.3 Optimization algorithms 

 The main objective of the optimization is to reach the best option, in a set of options of 

input values to be used in the procedure, to find an extremum of a specified function (Horst, 

Pardalos and Thoai, 2000). In this work, it is aimed to reach the minimum point. 
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 The processes of optimization usually generate an improvement in each interaction 

until reaching the convergence in the minimum point of the function. However, several 

models can present more than one solution, due to its nonlinearity. This is common when an 

inversion problem is being solved, a situation in which the focus is to obtain the best possible 

approximation of the parameters to be estimated. 

 In this work, five known optimization algorithms from the literature were selected. 

Three of them (IMFL, FMINSEARCH and SID-PSM) are local search optimization 

algorithms, which were used with the multi-start procedure aiming to run the optimization 

algorithm several times, once they could not efficiently find a global minimum region among 

more than one minimum region, and, therefore, not providing a reliable solution. With the 

multi-start procedure, the optimization restarts its interactions from different random initial 

points. When the problem is unimodal, it can be easily applied without the multi-start 

procedure. For the multimodal problems, an alternative for the multi-start procedure is to use 

global search optimization algorithms, as MCS and TOMLAB/LGO. 

The optimization algorithm, along with the norm, is the responsible to find the 

minimum region by minimizing the error between the calculated and the observed data. So, 

the calculation of the data with the approximation used for the initial parameters related to a 

random starting point on the topography of the function is performed, and then the difference 

between the calculated curve and the observed curve using one of the two norms is compared. 

If the minimum value found in the interaction is higher than the value defined initially as the 

minimum acceptable value, the optimization goes on for a next interaction until it reaches a 

minimum value lower than the value set as a minimum acceptable value. Therefore, the last 

interaction finishes and the last comparison between the observed and calculated data is 

performed. So, it provides the lowest error for a specific approximation with a specific 

algorithm minimized with a specific norm, as presented by Zuniga (2019a and 2019b). 

 

5.3.1 IMFIL 

 IMFIL (Implicit Filtering) is an implementation, in MATLAB, of the implicit filtering 

algorithm, a local search algorithm with a deterministic sampling method for bound-

constrained optimization. This kind of algorithm is useful to minimize functions which are 
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non-smooth, noisy, random or discontinuous (Winslow et al., 1991; Gilmore and Kelley 

1995; Kelley, 2011). 

 

5.3.2 FMINSEARCH 

 FMINSEARCH (Find Minimum Search) is a MATLAB implementation of the 

Nelder-Mead algorithm (Nelder and Mead, 1965), which is based on the simplex method 

(Spendley et al., 1962; Lagarias et al., 1998). This local search algorithm is focused in the use 

of a simplex, a polytope of n+1 vertices in n dimensions with edges of the same size, and it is 

useful for unconstrained optimization problems (Coxeter, 1948; Lewis, Torczon and Trosset, 

2000). 

 

5.3.3 SID-PSM 

 SID-PSM (Simplex Derivative - Pattern Search Method) is a local search algorithm 

implemented in MATLAB, based on a pattern search method with the pool step guided by 

simplex derivatives (Custódio and Vicente, 2007 and 2008). This kind of algorithm was 

created to solve unconstrained and constrained problems, and each search step is based on the 

optimization of quadratic surrogate models (Custódio et al., 2010). 

As the optimization methods shown previously are local search algorithms, it is 

necessary to use the multi-start procedure which is based on performing several inversions 

starting from different sets of initial points (Kan and Timmer, 1978a and 1978b; Telraky and 

Sotirov, 2010 and 2013). 

 

5.3.4 MCS 

 MCS (Multilevel Coordinate Search) is a MATLAB implementation of the algorithm 

for global optimization of bound-constrained problems (Neumaier et al., 2005). This 

algorithm is based on performing the partition of the search space into boxes with an 

evaluated base point. The global local search is balanced by a multilevel approach, according 

to which box is assigned a level s that is an increasing function of the number of times that the 

box was processed (Huyer and Neumaier, 1999). 
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5.3.5 TOMLAB/LGO 

 The TOMLAB/LGO is a TOMLAB solver implemented in MATLAB. This kind of 

solver provides access to several derivative-free optimization solvers (Jones, 2001; 

Holmström et al., 2007a and 2007b; Holmström et al., 2008). The LGO (Local and Global 

Optimization) solver used is a combination of global and local nonlinear solvers that 

implements a combination of Lipschitzian-based branch-and-bound with deterministic and 

stochastic local search (Pintér, 1995; Pintér et al., 2006). 

 Other optimization algorithms were considered; however, for the similarities in the 

operations and in the results concerning the selected methods, some algorithms, such as 

SNOBFIT (Huyer and Neumaier, 2008), PSWARM (Vaz and Vicente, 2007), CMA (Hansen, 

2006; Hansen, 2016), among others (Rios and Sahinidis, 2013), were not used in this work. 

 

5.4 L1- and L2-norm 

 A norm is, concerning the mathematics, the total length or the total size of, 

respectively, a set of vectors in a vector space or a set of matrices in a matrix space. A norm is 

essentially a function, for example, which assigns a strictly positive length or size to each 

vector in a vector space; however, it is not valid to the zero vector, due to the fact that, in this 

case, the length is assigned as zero. So, the higher the norm is, the bigger the value in the 

vector or in the matrix is (Treves, 1967). The norm is also known as Euclidian distance, 

among other names. 

 When the L2-norm is used, also known as least squares, it is based on the 

minimization of the sum of the square of the differences between the observed value and the 

estimated value. On the other hand, the L1-norm is known as least absolute deviation or least 

absolute errors. For this case, the minimization is performed minimizing the sum of the 

absolute differences between the observed value and the estimated value (Khaleelulla, 1982). 

The difference between the L1- and L2-norm is represented in Figure 32. 
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Figure 32: Two-dimensional example showing the sparseness of a solution when using the L1-norm and the L2-

norm. 

  

The L2-norm is the most popular one, and it is used in many fields of physics and 

engineering. Even though the solution of least squares method is easy to compute, it may be 

not the best solution, due to its smooth nature. For this reason, in many cases, it is hard to find 

a solution which is single and, at the same time, the best one for the problem. However, the 

L1-norm, in some cases, can provide a better set of results due to its not-smooth nature, once 

the unicity is stronger in this kind of problem. Even though the L1-norm minimization has a 

similar form to the L2-norm, it is much harder to solve. Due to the absence of a smooth 

behaviour in this kind of function, the search for the best solution must be performed directly 

by seeking the means of the computed solutions (Bourbaki, 1987). 

 Even though it is difficult to find a solution with the L1-norm, the increase of the 

computational processing power in the last decades allowed overcoming these limitations. 

Then, it is possible to use it as direct search, and also to divide the space in parts of L1-norm 

and other parts of L2-norm. 

 In this case of comparing the optimization algorithms, it was necessary to select 

derivative free algorithms, once algorithms which use derivatives would not work for L1-
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norm. For this reason, it was necessary to select optimization algorithms which are able to be 

used for both norms, as it was presented by Zuniga et al. (2019b and 2019c). 

 

5.5 Objective function analysis 

The objective function is the function which defines the quality of a solution in 

relation to its variables. 

 The method used to make the estimation of the parameters of the travel-time 

approximations possible is based on the implementation of an algorithm aiming to optimize 

the fit for the reflection PP and PS events. 

The least squares method is the standard approach to approximate solutions. This 

method consists in reaching the best fit for a set of data aiming to minimize the sums of the 

squares of the differences between the estimated values and the observed values (Stigler, 

1981). In this work, the least squares method was used to perform the inversion to measure 

how close the estimated travel-times and the observed travel-times are. With the minimum 

value of the function, there is the optimum value of the function, once the sum of the squares 

of the differences between the observed and estimated travel-times is the least possible. 

With this, it is necessary to select the search algorithm; however, it is essential to 

analyse how complex the problem is. This analysis can be performed by observing the 

residual function maps (Larsen, 1999, Kurt, 2007). It is appropriated to use this kind of 

analysis for problems with two variables. However, in the cases with three or more variables, 

it is not possible to have reliable information concerning the complexity of the function. It is 

associated to the fact that the construction of the map has two parameters as variables 

(velocity and the nonhyperbolicity parameter), and the third parameter (the time for zero 

offset) is fixed in its value associated to the minimum value, the closest value from the correct 

one. To overcome these limitations, a method which consists in analysing the dispersions of 

the results obtained from several inversions was adopted. The results obtained are plotted in a 

hyperplane, where the vertical and horizontal axes are the related parameters, and the third 

dimension is the representation of the minimum values of the objective function (Bokhonok, 

2010; Zuniga, 2015). 
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5.5.1 Model 1 

It was possible to observe that the Malovichko (1978) approximation showed a 

homogeneous topological structure concerning the objective function. Also, it showed to be a 

unimodal approximation in studied cases (Figures 33 and 34). Generically, all approximations 

showed a PS converted wave event with the structure displaced along the values of the axes, 

and this displacement is associated to the difference between the parameters of the 

conventional event and the converted event. Even with the L1-norm, the variation in the 

structure was subtle. However, the difference between the maximum region and the global 

minimum region became more abrupt and with a narrower global minimum region (Figures 

35 and 36). 

The approximation proposed by Alkhalifah and Tsvankin (1995) showed the same 

kind of variation between the PP and PS events, and for the L2- and L1-norm (Figures 37, 38, 

39 and 40). 

Ursin and Stovas (2006) approximation for this model showed to have a unimodal 

statistical distribution, in the same way as previous works with similar models. This 

approximation showed the same variations between the Figures 41 and 42, and Figures 43 and 

44. 

The Figures 45 and 46 showed the same variation between a PP and a PS reflection 

event, which can also be seen concerning the variations between the L2- and L1-norm 

(Figures 47 and 48). Further, this approximation (Blias, 2009), which presented the same 

characteristics of the Ursin and Stovas (2006) one, also showed to be unimodal for this model. 

The approximation developed by Muir and Dellinger (1985) presented a multimodal 

behaviour. However, the variation between the PP and PS reflection events was different than 

the others (Figures 49 and 50). Its variation was not only concerning the displacement of the 

objective function structure, but there was also a variation of the structural position between 

the global and local minimum region. This factor is due to the local and global minimum 

values being so close to each other. The variation concerning the L2- and L1-norm (Figures 

51 and 52) presented the same kind of variation as the other approximations. 

The approximation proposed by Li and Yuan (2001) showed a multimodal behaviour 

and only a structural variation between the PP and PS events (Figures 53 and 54), and the 

same variation between L2- and L1-norm as the other approximations (Figures 55 and 56). 



108 

 

The approximation proposed in this work showed the same characteristics and 

variations as the approximation proposed by Li and Yuan (2001), due to the fact that the 

development of this approximation shares the same origin conserving some characteristics 

and behaviours (Figures 57, 58, 59 and 60). The main difference is concerning the topological 

structure of the objective function which presented an additional parameter as a less sensible 

variable than what is shown by Li and Yuan (2001) approximation. 
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Figure 33: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 34: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 35: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 36: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 37: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions.  

 

Figure 38: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 39: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 40: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 41: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 42: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 43: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 44: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 45: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 
Figure 46: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 47: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 
Figure 48: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 49: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 50: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 



118 

 

 
Figure 51: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 52: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 53: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 54: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 55: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 
Figure 56: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 57: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 
Figure 58: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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Figure 59: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 
Figure 60: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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5.5.2 Model 2 

 With a model which is slightly more complex, subtle differences in the topological 

structure could be observed. However, the same variations could be seen for the Malovichko 

(1978) approximation concerning the distribution of the contour lines of the structure between 

the PP and PS events (Figures 61 and 62). And in the Figures 63 and 64, it is possible to 

observe, again, the gradient of the curves becoming stronger between the L2- and L1-norm. 

Furthermore, the approximation showed to be, once again, a unimodal approximation. 

 The Alkhalifah and Tsvankin (1995) approximation showed to be unimodal and 

presented the same characteristics as before (Figures 65, 66, 67 and 68), except for the subtle 

differences in the topological structure. 

 The approximation proposed by Ursin and Stovas (2006) again showed the same 

characteristics and variations as the previous model (Figures 69, 70, 71 and 72). 

 For the approximation proposed by Blias (2009), the same kind of variations as the 

previous approximation could be observed (Figures 73, 74, 75 and 76). 

 The Muir and Dellinger (1985) approximation showed the same curious variation it 

presented previously concerning the PP and PS event (Figures 77 and 78). It also presented 

the same multimodal behaviour and variation between the norms (Figures 79 and 80). 

 The approximation presented by Li and Yuan (2001) showed all the same 

characteristics and variations it showed in Model 1 (Figures 81, 82, 83 and 84). 

 The proposed approximation showed the same complex characteristics and behaviours 

concerning the topological structure of the objective function, and also presented similar 

variations as before (Figures 85, 86, 87 and 88). 
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Figure 61: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 62: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 63: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 64: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 



126 

 

 

Figure 65: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 66: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 67: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 68: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 69: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 70: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 71: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 72: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 73: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 74: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 75: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 76: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 77: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 78: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 79: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 80: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 



134 

 

 

Figure 81: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 82: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 83: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 84: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 85: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 86: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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Figure 87: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 88: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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5.5.3 Model 3 

 As it was shown, the third model has a different characteristic than the other Santos 

Basin structures, so it is significantly more complex than the previous models. However, 

nothing except for the subtle variation in the topological structure changed for the Malovichko 

(1978) approximation. The variations and characteristics that are similar to what already was 

observed in the Models 1 and 2 can be seen in the Figures 89, 90, 91 and 92. 

 The approximation proposed by Alkhalifah and Tsvankin (1995) behaved, concerning 

its variations, in a similar manner as before (Figures 93, 94, 95 and 96). 

 As it was shown before, the approximation proposed by Ursin and Stovas (2006) 

presented to be unimodal again, and with the same variations as in the previous models 

(Figures 97, 98, 99 and 100). 

 In a similar way as the Ursin and Stovas (2006) approximation, the one proposed by 

Blias (2009) showed the same kinds of variations (Figures 101, 102, 103 and 104). 

 Even with a model with a significantly different characteristic, the approximation 

proposed by Muir and Dellinger (1985) showed the same unusual characteristic concerning 

the variation between the conventional event to the converted event (Figures 105 and 106). 

Moreover, it showed the same multimodal behaviour as before and the same variations 

concerning the L2- and L1-norm (Figures 107 and 108). 

 The approximation proposed by Li and Yuan (2001), showed the same behaviour as 

before, being multimodal and with the already seen variations between PP to PS events and 

between L2- and L1-norm (Figures 109, 110, 111 and 112). 

 The proposed approximation in this work showed only subtle variations concerning 

the topology of the objective function. Concerning the other characteristics and variations, it 

behaved in a similar manner (Figure 113, 114, 115 and 116). 
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Figure 89: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 90: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 91: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 92: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 93: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 94: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 



142 

 

 

Figure 95: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 96: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin (1995) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 97: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 98: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 



144 

 

 

Figure 99: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 100: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 101: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 102: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 103: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 104: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 105: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 106: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 107: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 108: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 109: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 110: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 111: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 112: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 113: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 114: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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Figure 115: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 116: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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5.5.4 Model 4 

 The fourth model is shallower than the three first ones, both in the water depth as in 

the rock structure where there is no complex structural characteristic. However, the 

acquisition geometry was maintained to force the limits of each approximation. Thus, even 

with a simple and shallow reservoir, the large maximum offset between source and receiver 

brings a significant complexity to this model. For this reason, it was possible to observe that 

the Malovichko (1978) approximation showed a more visible variation in the topological 

structure of the objective function. A more substantial variation was observed between the PP 

and PS events (Figures 117 and 118). However, the approximation was still unimodal and 

showed the same kinds of variations concerning the L2- and L1-norm (Figures 119 and 120). 

 The same strong variation could be seen between the PP and PS events of the 

Alkhalifah and Tsvankin (1995) approximation (Figures 121 and 122). However, the 

approximation maintained the unimodal behaviour and the variations between the L2- and L1-

norm (Figures 123 and 124). 

 In this case, the approximation proposed by Ursin and Stovas (2006) showed to be 

multimodal, differently than the three previous models. Furthermore, it showed a strong 

variation between the PP and PS events (Figures 125 and 126), similarly to the other previous 

approximations for this model. However, the most significant variation was concerning the 

one between the L2- and L1-norm, where the approximation changed its behaviour from 

multimodal to unimodal (Figures 127 and 128). 

 The same magnitude and kind of variations could be seen in this model for the 

approximation proposed by Blias (2009), which also had an important variation between the 

two norms (Figures 129, 130, 131 and 132). 

 The approximation proposed by Muir and Dellinger (1985) showed to be multimodal 

again. However, the variation between the two events, PP and PS, concerning the exchange in 

the global and local minimum region did not exist (Figures 133 and 134). Even with this 

difference, the variation concerning the norms was still similar to what was previously seen 

for this approximation (Figures 135 and 136). 

 The Li and Yuan (2001) approximation showed to be, again, multimodal, and showed, 

as the other approximations for this model, a visible variation between the PP and PS events 
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(Figures 137 and 138). Concerning the variation between the norms, the same kind of 

variation seen before, for this approximation, is observed (Figures 139 and 140). 

 The proposed approximation showed similar variations and behaviour as the one 

proposed by Li and Yuan (2001). However, in this model, the topology of the objective 

function was strongly different than the topology in the first three models (Figures 141, 142, 

143 and 144). And as consequence of this strong difference, the topological structure was 

narrower concerning the additional parameter. 
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Figure 117: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 118: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 119: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 120: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 121: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 

 

Figure 122: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 
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Figure 123: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 

 

Figure 124: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 
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Figure 125: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 126: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 127: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 128: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 129: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 130: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 131: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 132: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 133: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 134: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 135: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 136: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 137: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 138: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 139: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 140: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 141: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 142: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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Figure 143: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 144: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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5.5.5 Model 5 

 The Model 5 is a structure which is even shallower than the fourth model, which 

would make it a simpler model to work. However, as the previous one, the fifth model still 

uses the geometry of acquisition of the first three models, which increases the complexity, 

once the nonhyperbolicity due to the RMS velocity relations gets stronger. For this reason, the 

approximation proposed by Malovichko (1978) still showed a significant variation between 

the PP and PS events (Figures 145 and 146). It also showed the abrupt variation between the 

topology of the L2-norm and the L1-norm (Figures 147 and 148). 

 The same kind of variations could be observed for the Alkhalifah and Tsvankin (1995) 

approximation in this model (Figures 149, 150, 151 and 152). 

 The approximation proposed by Ursin and Stovas (2006) showed similar variations as 

the Model 4 between the PP and PS events (Figures 153 and 154), and also concerning the 

two norms (Figures 155 and 156). 

 The same could be observed in the approximation proposed by Blias (2006), which 

showed a significant variation between the two reflection events (Figures 157 and 158) and 

stopped being multimodal after the application of the L1-norm rather than the L2- (Figures 

159 and 160). 

 Similarly to the Model 4, the Muir and Dellinger (1985) approximation showed only 

variations concerning the topology between the PP and PS events (Figures 161 and 162) and 

not concerning the exchange of the local and global minimum regions. Concerning the 

variation between the norms, it showed a similar behaviour to what was observed in the fourth 

model (Figures 163 and 164). 

 The Li and Yuan (2001) approximation showed the same kind of variations as in the 

previous model (Figures 165, 166, 167 and 168). 

 It can be observed that, in the Figures 169, 170, 171 and 172, the proposed 

approximation showed a similar more complex topological structure concerning the objective 

function, and also showed the same kind of variations and behaviour as it showed in the 

Model 4. 
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Figure 145: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 146: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 147: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 148: The residual function map which demonstrates the complexity of the Malovichko (1978) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 149: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 

 

Figure 150: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 
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Figure 151: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 

 

Figure 152: The residual function map which demonstrates the complexity of the Alkhalifah and Tsvankin 

(1995) approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum 

region, and the blue dispersions, the local minimum regions. 
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Figure 153: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 154: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 155: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 156: The residual function map which demonstrates the complexity of the Ursin and Stovas (2006) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 



176 

 

 

Figure 157: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 158: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 159: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 

 

Figure 160: The residual function map which demonstrates the complexity of the Blias (2009) approximation of 

the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the blue 

dispersions, the local minimum regions. 
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Figure 161: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 162: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 163: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 164: The residual function map which demonstrates the complexity of the Muir and Dellinger (1985) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 165: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 166: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 167: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 

 

Figure 168: The residual function map which demonstrates the complexity of the Li and Yuan (2001) 

approximation of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, 

and the blue dispersions, the local minimum regions. 
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Figure 169: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 170: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L2-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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Figure 171: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PP reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 

 

Figure 172: The residual function map which demonstrates the complexity of the approximation proposed in this 

work of the PS reflection event with L1-norm. Red dispersions represent the global minimum region, and the 

blue dispersions, the local minimum regions. 
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6 RESIDUAL TRAVEL-TIME CURVE ANALYSIS 

  

After the calculated curve is fitted to the observed one, there still is a residual error 

between the two curves. This error is associated to the objective function (minimum value), 

and it represents a solution related to the set of parameters that is the best characterization for 

the analysed model with the referent approximation. Therefore, the calculated curve, with the 

parameters related to the global minimum, represents the best possible solution among the set 

of inversions. 

 It is commonly difficult to compare two or more approximations in travel-time curves 

scale due to the quality of the obtained fit. For this reason, it is necessary to perform the 

residual analysis between the observed curve and the calculated one (the absolute difference 

between them). Thus, it is possible to observe the difference in the quality of the fit in a 

smaller scale. Then, it is possible to observe more accurately the regions in which the curve 

fits the best. 

 The most accurate curve is the one closer to the zero all along the offset; however, 

some approximations showed a better fitting in different regions of the curve. For this reason, 

it is necessary to consider not only the absolute quality of the fitting all along the offset, but 

also prioritize a better fitting closer to the time for zero offset, once it is one of the three 

parameters to be recovered during the inversion. So, an approximation that shows a very good 

fitting all along the curve, but not a good fitting closer to time for zero offset is not considered 

a good fitting, once the value of this parameter would be recovered with a higher error. 

 

6.1 Model 1 

 At first, it is important to remember that the hyperbola equation (Dix, 1955) is being 

presented only for a comparison effect and due to its simplicity; the hyperbolic approach 

presented the worst results in all reflections events, for both norms, and all models. It was 

possible to observe the low quality of the curve fitting in the Figures 173 and 174, where for 

PS events it reached an error of almost 10% with the simplest optimization algorithm. 

 Another important confirmation concerns the results of the approximation proposed by 

Alkhalifah and Tsvankin (1995), which showed the worst results among the nonhyperbolic 
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multiparametric travel-time approximations for all scenarios tested. It was possible to observe 

that, in the beginning of the curve, it was less accurate than the other nonhyperbolic 

approximations (Figure 176), even for the PS reflection event — when this approximation 

was showing a better fitting at the beginning of the curve —, its accuracy had a very low 

quality for the rest of the curve (Figure 175). 

 A similar condition was observed in the behaviour of the Muir and Dellinger (1985) 

approximation, which presented the second worst set of results among the approximations 

with three parameters for all models, norms and reflection events tested in this work, and it 

was easily observable that, even with a better optimization algorithm, its accuracy was not so 

good (Figures 177 and 178). The use of the L1-norm increases the accuracy, but not enough 

to make this approximation reliable for this case (Figures 179 and 180). 

 In each wave reflection event, each norm and each model, the approximation proposed 

by Li and Yuan (2001) presented the second best set of results of all equations tested in this 

work. For the most accurate among the local search optimization algorithms tested, this 

approximation presented a very good fitting for both reflection events (Figures 181 and 182), 

and for the L1-norm, and it showed a 10% decrease of the residual error (183 and 184). 

 The approximation proposed in this work presented to be the most accurate for all 

scenarios tested. This approximation for this model with the MCS optimization algorithm 

showed the highest efficiency, once it showed to be very accurate, and also a good processing 

time (Figures 185 and 186). For the L1-norm, it showed an even better accuracy (Figures 187 

and 188). 

 In the Model 1, the Ursin and Stovas (2006) approximation showed the third best set 

of results for every PP wave reflection event of each optimization algorithm, while the Blias 

(2009) and Malovichko (1978) approximations presented, respectively, the fourth and the fifth 

best results, as it can be more clearly observed in Figure 189. In the case of the converted 

wave events for all optimization algorithms, the Figure 190 showed more easily that the Blias 

(2009) approximation presented the third best results; Malovichko (1978), the fourth best 

results; and Ursin and Stovas (2006), the fifth best results. Figures 191 and 192 showed the 

same variation, but with an increase of accuracy of around 10%. 
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Figure 173: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm. 

 

Figure 174: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm. 
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Figure 175: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm. 

 

Figure 176: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm. 
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Figure 177: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm. 

 

Figure 178: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm. 
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Figure 179: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm. 

 

Figure 180: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm. 
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Figure 181: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm. 

 

Figure 182: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm. 
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Figure 183: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm. 

 

Figure 184: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm. 
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Figure 185: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and MCS optimization algorithm. 

 

Figure 186: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and MCS optimization algorithm. 
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Figure 187: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and MCS optimization algorithm. 

 

Figure 188: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and MCS optimization algorithm. 
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Figure 189: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 190: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 
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Figure 191: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 192: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 
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6.2 Model 2 

 For the PP event with L2-norm using the IMFL optimization algorithm (Figure 193), 

the approximation of Ursin and Stovas (2006) showed the third best result, while the one 

proposed by Blias (2009) showed the fourth best. The one proposed by Malovichko showed 

the fifth best result for this case. It was possible to observe that, for the PS event, Blias (2009) 

showed the third best result; Malovichko (1978), the fourth best; and Ursin and Stovas (2006), 

the fifth best (Figure 194). However, applying the L1-norm (Figures 195 and 196), the result 

showed to be very similar, with the exception of the decrease of the error in around 10%. 

 With the FMINSEARCH algorithm, the PP event using L2-norm (Figure 197) showed 

the third best result for the Ursin and Stovas (2006) approximation, the fourth best for Blias 

(2009) and the fifth best for Malovichko (1978). For the converted event (Figure 198), it was 

observed that the third best result was for Blias (2009), the fourth best for Malovichko (1978) 

and the fifth best for Ursin and Stovas (2006). These results presented an increase of around 

1% concerning the accuracy when the L1- norm was used (Figures 199 and 200). 

 The SID-PSM optimization algorithm along with the L2-norm presented that, for the 

conventional reflection event, Ursin and Stovas (2006) had the third, Blias (2009) the fourth, 

and Malovichko (1978) the fifth best results (Figure 201). For the PS reflection event (Figure 

202), Blias (2009) showed to be the third, Malovichko (1978) the fourth and Ursin and Stovas 

(2006) the fifth best. For the L1-norm, an increase of the quality in the result could be 

observed (Figures 203 and 204), but still showing the same sequence of results. 

 The MCS algorithm along with the L2-norm used for the inversion of the PP event 

showed the Ursin and Stovas (2006) approximation as the third best result; Blias (2009), the 

fourth; and Malovichko (1978), the fifth (Figure 205). For the converted wave event, Blias 

(2009) showed to be the third, Malovichko (1978) the fourth and Ursin and Stovas (2006) the 

fifth best result (Figure 206). When the L1- norm is used for this case (Figures 207 and 208) a 

similar result can be observed, however, with a small increase of accuracy. 

 For the TOMLAB/LGO algorithm, when the L2-norm was used for the PP event 

(Figure 209), Ursin and Stovas (2006) showed the third best result; Blias (2009), the fourth; 

and Malovichko (1978), the fifth. For the PS event, Blias (2009) showed the third best result; 

Malovichko (1978), the fourth; and Ursin and Stovas (2006), the fifth (Figure 210). The same 

small increase as before could be observed for the L1-norm (Figures 211 and 212). 
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Figure 193: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm. 

 

Figure 194: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm. 
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Figure 195: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm. 

 

Figure 196: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm. 
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Figure 197: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm. 

 

Figure 198: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm. 
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Figure 199: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm. 

 

Figure 200: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm. 
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Figure 201: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm. 

 

Figure 202: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm. 
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Figure 203: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm. 

 

Figure 204: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm. 
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Figure 205: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and MCS optimization algorithm. 

 

Figure 206: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and MCS optimization algorithm. 
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Figure 207: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and MCS optimization algorithm. 

 

Figure 208: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and MCS optimization algorithm. 
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Figure 209: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 210: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 
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Figure 211: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 212: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 
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6.3 Model 3 

 In the third model, using the IMFL optimization algorithm with the L2-norm for PP 

event resulted in Ursin and Stovas (2006) showing the third best result; Malovichko (1978), 

the fourth; and Blias (2009), the fifth (Figure 213). For the PS reflection event, Malovichko 

(1978) showed the third best result; Blias (2009), the fourth; and Ursin and Stovas (2006), the 

fifth (Figure 214). Similarly to the previous two models, the L1-norm presented a better result 

than the L2-norm (Figures 215 and 216). 

 The FMINSEARCH optimization algorithm presented Ursin and Stovas (2006) as the 

third, Malovichko (1978) as the fourth and Blias (2009) as the fifth best results using L2-norm 

for the conventional event (Figure 217). For the converted wave event, Malovichko (1978) 

showed to be the third most accurate, while Blias (2009) showed to be the fourth and Ursin 

and Stovas (2006) were the fifth (Figure 218). The use of the L1-norm resulted in less than 

10% of increase for the accuracy (Figures 219 and 220). 

 As shown in Figure 221, the SID-PSM optimization algorithm along with the use of 

L2-norm showed Ursin and Stovas (2006) as the third best result; Malovichko (1978), the 

fourth; and Blias (2009), the fifth for the PP event. On the other hand, for the PS event, 

Malovichko (1978) presented the third best result; Blias (2009), the fourth; and Ursin and 

Stovas (2006), the fifth (Figure 222). As it was seen before for the other two local search 

algorithms with the use of L1-norm, it was possible to observe a similar increase concerning 

the accuracy (Figures 223 and 224). 

 Using the global search optimization algorithm MCS with the L2-norm for the PP 

event, it was found that the approximation proposed by Ursin and Stovas (2006) had the third, 

Malovichko (1978) the fourth, and Blias (2009) the fifth best results (Figure 225). For the 

converted wave event, Malovichko (1978) showed the third best result, Blias (2009) showed 

the fourth and Ursin and Stovas (2006) were the fifth (Figure 226). Using the L1-norm 

resulted in a decrease of the error of around 1% (Figure 227 and 228). 

 The TOMLAB/LGO optimization algorithm presented the same sequence of results 

shown by the MCS algorithm for the PP event using the L2-norm (Figure 229) and for PS 

using the same norm (Figure 230). Using the L1-norm (Figures 231 and 232) also showed a 

decrease of the error of around 10%. 
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Figure 213: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm. 

 

Figure 214: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm. 
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Figure 215: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm. 

 

Figure 216: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm. 
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Figure 217: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm. 

 

Figure 218: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm. 
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Figure 219: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm. 

 

Figure 220: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm. 
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Figure 221: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm. 

 

Figure 222: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm. 
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Figure 223: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm. 

 

Figure 224: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm. 
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Figure 225: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and MCS optimization algorithm. 

 

Figure 226: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and MCS optimization algorithm. 
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Figure 227: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and MCS optimization algorithm. 

 

Figure 228: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and MCS optimization algorithm. 
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Figure 229: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 230: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 
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Figure 231: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 232: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 
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6.4 Model 4 

In Model 4, the proposed approximation and the one proposed by Li and Yuan (2001) 

presented respectively the best and the second best results, even when this model did not 

represent a carbonate reservoir from pre salt, which showed that both approximations are very 

stable for controlling the nonhyperbolicity in different kinds of problems. However, all 

approximations showed much more difficulty, once the RMS velocity was much stronger than 

the previous models. This problem can be clearly observed in Figures 233 and 234, where the 

Dix (1955) approximation presented the highest error of around 25%, while other 

approximations showed 5 to 10% of maximum error. Even though both approximations 

showed the best set of results, the error was the second highest presented in this work, 

reaching more than 2%. For the L1-norm, all the approximations showed an average increase 

of the accuracy of more than 10% (Figures 235 and 236). 

For the FMINSEARCH algorithm, the error decreased significantly, but there was also 

a variation among Blias (2009), Malovichko (1978) and Ursin and Stovas (2006) concerning 

the quality of the fitting. With the L2-norm for PP event (Figure 237), Blias (2009) showed 

the third best curve fitting; Malovichko (1978), the fourth; and Ursin and Stovas (2006), the 

fifth. For the PS event (Figure 238), Malovichko (1978) showed the third, Ursin and Stovas 

(2006) the fourth and Blias (2009) the fifth best result. In Figures 239 and 240, it is possible 

to observe that the use of L1-norm provides an increase higher than 10%. 

Using the SID-PSM algorithm with L2-norm for the PP event, the approximation 

proposed by Blias (2009) showed the third best result, while Malovichko (1978) showed the 

fourth best, and Ursin and Stovas (2006) the fifth best one (Figure 241). For the converted 

event, Malovichko (1978) showed the third best result; Ursin and Stovas (2006), the fourth; 

and Blias (2009), the fifth (Figure 242). It could be observed that the decrease of the error was 

of around 10% when the L1-norm was used (Figures 243 and 244). 

Using the MCS, the results increased significantly for this case, showing a lower than 

2% error for the nonhyperbolic equations using the L2-norm for PP (Figure 245) and for PS 

(Figure 246). Using the L1-norm resulted again in a decrease of 10% of the error (Figures 247 

and 248). The same condition could be observed for the PP event using the TOMLAB/LGO 

algorithm (Figure 249) and for PS (Figure 250). For the L1-norm, the same increase and the 

same sequence of results for other algorithms were observed (Figures 251 and 252). 
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Figure 233: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm. 

 

Figure 234: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm. 
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Figure 235: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm. 

 

Figure 236: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm. 
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Figure 237: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm. 

 

Figure 238: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm. 
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Figure 239: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm. 

 

Figure 240: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm. 
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Figure 241: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm. 

 

Figure 242: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm. 
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Figure 243: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm. 

 

Figure 244: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm. 
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Figure 245: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and MCS optimization algorithm. 

 

Figure 246: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and MCS optimization algorithm. 
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Figure 247: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and MCS optimization algorithm. 

 

Figure 248: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and MCS optimization algorithm. 
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Figure 249: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 250: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 
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Figure 251: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 252: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 
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6.5 Model 5 

For the last model tested in this work, it was possible to observe the highest error 

among all the five models; and for the IMFL algorithm (Figure 253), it was clear that the 

converted event (Figure 254) presented as the hardest condition to perform the curve fitting, 

showing almost 30% of residual of maximum error. Even when it decreases the error in 

around 10%, the use of the L1-norm showed a high error for the conventional event (Figure 

255), and a maximum error higher than 25% (Figure 256). 

Using the FMINSEARCH along with the L2-norm, the average error decreased from 

5% to 3% for the PP event (Figure 257) and from 5.5% to 2.5% for the converted-wave event 

(Figure 258). The L1-norm helped to decrease the error in between 0.5% (Figure 259) and 

0.2% (Figure 260) for the PP and PS events, respectively. 

The last local search optimization algorithm, the SID-PSM, showed a good result for 

L2-norm, where it was possible to observe that, as it was in the two previous algorithms, the 

approximation proposed by Ursin and Stovas (2006) showed the third best result, Blias (2009) 

showed the fourth best, and Malovichko (1978) showed the fifth best one for the conventional 

reflection event (Figure 261). For the PS event, the approximation proposed by Malovichko 

(1978) showed the third best result; Blias (2009), the fourth; and Ursin and Stovas (2006), the 

fifth (Figure 262). For the L1-norm, it was observed that this condition also showed an 

increase of the accuracy of around 10% (Figures 263 and 264). 

For the MCS optimization algorithm, it was possible to observe, using the L2-norm, 

which, for the conventional event, the same sequence of results shown by the previous 

algorithms (Figure 265). The same could be said for the converted wave event (Figure 266), 

even when showing a higher and more variable error. For the L1-norm, the error decreased in 

the same manner as it was shown before (Figures 267 and 268), related to an increase of 

around 10% of accuracy. 

For the TOMLAB/LGO algorithm using the L2-norm, Ursin and Stovas (2006) 

showed the third best result, Blias (2009) showed the fourth best result and Malovichko 

(1978) showed the fifth best one for the PP event (Figure 269). For the PS event, Malovichko 

(1978) showed the third best result, while Blias (2009) showed the fourth best and Ursin and 

Stovas (2006) presented the fifth best one (Figure 270). Using the L1-norm, it was possible to 

observe the increase of the accuracy, again for both events (Figures 271 and 272). 
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Figure 253: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and IMFIL optimization algorithm. 

 

Figure 254: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and IMFIL optimization algorithm. 
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Figure 255: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and IMFIL optimization algorithm. 

 

Figure 256: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and IMFIL optimization algorithm. 
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Figure 257: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and FMINSEARCH optimization algorithm. 

 

Figure 258: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and FMINSEARCH optimization algorithm. 
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Figure 259: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and FMINSEARCH optimization algorithm. 

 

Figure 260: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and FMINSEARCH optimization algorithm. 
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Figure 261: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and SID-PSM optimization algorithm. 

 

Figure 262: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and SID-PSM optimization algorithm. 
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Figure 263: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and SID-PSM optimization algorithm. 

 

Figure 264: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and SID-PSM optimization algorithm. 
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Figure 265: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and MCS optimization algorithm. 

 

Figure 266: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and MCS optimization algorithm. 



238 

 

 

Figure 267: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and MCS optimization algorithm. 

 

Figure 268: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and MCS optimization algorithm. 
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Figure 269: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 270: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L2-norm and TOMLAB/LGO optimization algorithm. 
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Figure 271: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PP reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 

 

Figure 272: Relative error in travel-time between the observed curve and the calculated curve with each 

approximation of the PS reflection event with L1-norm and TOMLAB/LGO optimization algorithm. 
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6.6 General accuracy analysis 

 As it was previously observed, the proposed approximation presented the best set of 

results, while Li and Yuan (2001) approximation showed the second best set of results 

analysed in this work. 

 In general, the approximation proposed by Blias (2009) showed the third best results. 

However, the approximation proposed by Malovichko (1978) showed almost the same quality 

in the results as the Blias (2009) approximation. The Ursin and Stovas (2006) approximation 

presented the fifth best results in a general way. 

 The approximations presented by Muir and Dellinger (1985) and Alkhalifah and 

Tsvankin (1995) presented, respectively, the second worst and the worst results, generically, 

in this work. And as it was already mentioned, all nonhyperbolic approximations tested in this 

thesis yield better results than the standard hyperbolic approximation of Dix (1955).. 

 The quality of the results decayed significantly in the converted wave events in 

comparison to the conventional PP events, due to the higher complexity of the PS events. 

 The application of L1-norm had a mean increase of accuracy of around 10% in 

comparison with the L2-norm considering the same optimization algorithm. 

 Concerning the variation from the L2-norm to L1-norm, the optimization algorithm 

IMFIL showed a mean increase of accuracy of around 11%. The FMINSEARCH showed a 

mean increase of 9% for all approximations. The algorithm SID-PSM presented a mean 

increase of 5% for all scenarios which were tested. A mean increase of 2% was shown by 

MCS algorithm. The lesser difference after applying the L1-norm was shown by the 

TOMLAB/LGO optimization algorithm, a mean increase of accuracy of around 1%. 

 Considering the IMFIL optimization algorithm as the reference, the FMINSEARCH 

algorithm presented a mean increase of 68% concerning the accuracy. SID-PSM optimization 

algorithm showed a mean increase of 78%; while the MCS algorithm, a mean increase of 

83%. The TOMLAB/LGO optimization algorithm presented a mean increase of accuracy of 

around 85%. 
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6.7 Processing time analysis 

 Dix (1955) hyperbola equation presented the lowest processing time for every 

inversion, in which the parameters were recovered. The approximation proposed by Li and 

Yuan (2001) presented the second best processing time. The approximation proposed in this 

work presented the third best processing time, generically. The Malovichko (1978) 

approximation showed the fourth best processing time, while the approximation proposed by 

Blias (2009) showed the fifth lowest processing time. The approximation proposed by 

Alkhalifah and Tsvankin (1995) presented the third worst processing time, while the 

approximation proposed by Muir and Dellinger (1985) presented the second worst processing 

time. The highest processing time was shown by the approximation proposed by Ursin and 

Stovas (2006).  

 Considering the IMFIL optimization algorithm as the reference, the FMINSEARCH 

algorithm showed a mean increase in processing time of around 12%. The mean increase of 

processing time which was shown by SID-PSM algorithm was of around 103%. The MCS 

optimization algorithm showed a mean increase of 209% concerning the relative processing 

time. A mean increase of 411% was observed in the processing time of the TOMLAB/LGO 

optimization algorithm. 

 The processing times, concerning the models, have a mean increase between 2.1% and 

5.4%, considering the first model as the reference, due to its simplicity. 

 All approximations, concerning the variation from the conventional PP wave event to 

the converted PS wave event, presented a mean increase in processing time of around 11%. 

 Concerning the application of the L1-norm, the eight approximations had a mean 

increase in processing time of 11% comparing to the L2-norm. 
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7 CONCLUSIONS 

 

The proposed automated picking technique was very important to conclude the main 

objectives in this work. With this, it was possible, for each model, to find the target travel-

time curve of each reflection event. The other proposed approach was also important to find 

other kinds of information concerning the phase variation, which were very important to 

understand how the phase changes and how to correct it, to perform a better NMO correction 

without muting a large part of the horizontalized event. It was also important to find the 

critical point data-driven, which was important to obtain information about elastic parameters. 

The variations between PP wave reflection events and the PS converted wave 

reflection events was clearly observed concerning the displacement of the contour lines, 

which is associated to the variation in the composition of the parameters. In the cases of 

Models 4 and 5, the variation between the reflection events is associated to the fact that the 

maximum offsets between source and receiver increase the distortion of the raytracing. 

Concerning the approximations, each one presents a different structure of topology of 

the objective function intrinsically related to their complexities. 

The gradient of the contour lines became much more abrupt after the L1-norm was 

applied rather than the L2-norm, which made a narrower global minimum region and 

attenuated some features. 

The variation in the topology concerning the models is associated to the fact that each 

model presents different composition of parameters. Furthermore, the variation in the model 

interferes significantly in some approximations, making them change their statistical 

distribution (e.g. Ursin and Stovas, 2006; Blias, 2009) or making exchanges between the 

global and local minimum regions (e.g. Muir and Dellinger, 1985). The second example is 

also affected by the variation between PP and PS wave reflection events. 

The approximations which presented unimodal behaviour were the one proposed by 

Malovichko (1978) and the one proposed by Alkhalifah and Tsvankin (1995), due to their 

simple topological structure of the objective function. The approximations mentioned before 

(Ursin and Stovas, 2006; Blias, 2009) behaved as unimodal for the Models 1 to 3, which 

presented a higher RMS velocity, while for the Models 4 and 5, which presented significantly 
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lower RMS velocities, these approximations showed to be multimodal. Thus, it led to 

understand that the increase of the RMS velocity of a model made the topological structure of 

the objective function more abrupt. Additionally, the approximations proposed by Muir and 

Dellinger (1985), Li and Yuan (2001) and the one proposed in this work showed to always be 

multimodal. Furthermore, the exchanges between the global and local minimum regions of 

the approximation proposed by Muir and Dellinger (1985) are associated to its idiosyncratic 

structure of the objective function that has local and global minimum regions very close to 

each other. Thus, the topology of the objective function was much more susceptible to 

varying with the approximation than with the models, reflection events or the norms. 

The proposed approximation and the one proposed by Li and Yuan (2001) share not 

only the multimodality, but also the similarities concerning the objective function. However, 

the approximation proposed by Li and Yuan (2001) was almost equally sensible concerning 

the RMS velocity and the 𝛾 parameter. On the other hand, the proposed approximation 

presented an RMS velocity parameter which is much more sensible than the additional one, 

which increases the precision to recover the RMS velocity, even increasing the time to 

perform the curve fitting. Another important behaviour of the proposed approximation is 

about the strong variation from the Models 1, 2 and 3 to the Models 4 and 5. The observed 

distortion made the objective function topology even narrower, which made this 

approximation reliable even for these kinds of models. 

Once the hyperbola equation (Dix, 1955) is the simplest approximation being 

compared, it presented the worst set of results. Among the nonhyperbolic multiparametric 

approximations, the ones proposed by Alkhalifah and Tsvankin (1995) and Muir and 

Dellinger (1985) were, respectively, the least and the second least accurate. The Ursin and 

Stovas (2006) approximation presented the fifth best set of results, while the approximation 

proposed by Malovichko (1978) showed the fourth best results. The approximation proposed 

by Blias (2009) showed a set of results slightly more accurate than the one proposed by 

Malovichko (1978). The approximation proposed by Li and Yuan (2001) presented as the 

second most accurate. The approximation proposed in this work showed the best set of 

results. 

The accuracy decreased for the converted wave event due to its higher complexity, 

which also happened with the complexity of the models. However, the L1-norm showed 

increases concerning the accuracy for all approximations and all optimization algorithms 
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tested. About the algorithms, the IMFIL showed to be the simplest one tested, while there 

were increases in the accuracy for all other optimization algorithms. The one which presented 

as the most precise is the TOMLAB/LGO, while the MCS presented results of almost the 

same quality. The third and the fourth most accurate optimization algorithms are, respectively, 

the SID-PSM and the FMINSEARCH. 

The processing time of the hyperbola approximation (Dix, 1955) was, by far, the 

lowest one, due to its simplicity. Among the nonhyperbolic multiparametric approximations, 

the one proposed by Li and Yuan (2001) presented the best processing time, while the 

proposed approximation appeared as the second best processing time. The Malovichko (1978) 

approximation showed the third best processing time among the multiparametric 

approximations. The Blias (2009) approximation presented the fourth lowest processing time 

among the nonhyperbolic approximations. The approximations proposed by Ursin and Stovas 

(2006), Muir and Dellinger (1985), and Alkhalifah and Tsvankin (1995) presented the highest 

processing times, respectively. 

The IMFIL was the optimization algorithm with the lowest processing time, while the 

FMINSEARCH was the second one. The SID-PSM algorithm presented the third best 

processing time. The highest processing time was shown by the TOMLAB/LGO and the 

second highest, by the MCS optimization algorithm. 

As it was expected, the conventional wave reflection events presented a lower 

processing time than the converted wave reflection events. However, there was a significant 

decrease in the processing time when the L1-norm was applied, rather than the L2-norm. 

 Among what was tested, it was possible to conclude that the residual function maps 

were important to understand the behaviour and its variations for each scenario, which 

brought significant information about which optimization algorithm and nonhyperbolic 

approximation must be used. 

 The application of the L1-norm showed to be an important option to perform a good 

processing, presenting faster and more accurate results than the L2-norm. However, it can 

only be used with derivative-free optimization algorithms. 

 The optimization algorithm which presented the best results with an acceptable 

processing time was the MCS algorithm, once the TOMLAB/LGO was too slow. As well, the 
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FMINSEARCH and the IMFIL can be used with the unimodal approximation proposed by 

Malovichko (1978), once the inversion can be performed only once, even with a local search 

algorithm. Certainly, this situation should be applied in conditions where there is enough 

knowledge about the model, and not for exploratory conditions. For more complex 

conditions, it is important to give more attention to the accuracy than to the processing time. 

Thus, the proposed approximation along with the MCS optimization algorithm should be the 

best option to obtain information in an exploratory field. 

 The approximation proposed in this thesis not only works very well, as it also presents 

a good processing time for a multimodal approximation, and is the most accurate among the 

approximations tested here for those kinds of models. 
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9 APPENDIX 

 

9.1 Appendix A – Seismogram of the pre salt models 
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Figure 273: Seismogram of the Model 1 with no noise. The red lines represent the automated picks for the PP and PSv events. 



257 

 

 

Figure 274: Seismogram of the Model 1 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events. 
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Figure 275: Seismogram of the Model 2 with no noise. The red lines represent the automated picks for the PP and PSv events. 
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Figure 276: Seismogram of the Model 2 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events. 
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Figure 277: Seismogram of the Model 3 with no noise. The red lines represent the automated picks for the PP and PSv events. 
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Figure 278: Seismogram of the Model 3 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events. 
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Figure 279: Seismogram of the Model 4 with no noise. The red lines represent the automated picks for the PP and PSv events. 
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Figure 280: Seismogram of the Model 4 with no noise with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events. 



264 

 

 

Figure 281: Seismogram of the Model 5 with no noise. The red lines represent the automated picks for the PP and PSv events. 
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Figure 282: Seismogram of the Model 5 with signal-noise ratio of 90%. The red lines represent the automated picks for the PP and PSv events. 
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9.2 Appendix B – PVO analysis of SvSv reflection events 

 

Figure 283: Seismograms of the four models used to perform the tests of PVO analysis. (A) Critical angle of around 37 degrees, (B) same critical angle, but with semi-

Gaussian wavelet, (C) critical angle of around 30 degrees and (D) critical angle of around 44 degrees. 
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Figure 284: The variation for each trace/angle shown versus the global minimum, amplitude and peak frequency (A) of the first and (B) of the second models from the PVO 

analysis. 
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Figure 285: The variation for each trace/angle shown versus the global minimum, amplitude and peak frequency (A) of the third and (B) of the fourth models from the PVO 

analysis. 
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Figure 286: The analytically calculated instantaneous phase versus the incident angle of (A) the first and second models, (B) third model and (C) the fourth model. 
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Figure 287: The reflection coefficient and the transmission coefficient versus the incidence angle. The red dashed line represents the critical angle of the first and second 

models. 
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Figure 288: The reflection coefficient and the transmission coefficient versus the incidence angle. The red dashed line represents the critical angle of the third model. 
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Figure 289: The reflection coefficient and the transmission coefficient versus the incidence angle. The red dashed line represents the critical angle of the fourth model. 



273 

 

 

9.3 Appendix C – Processing times 

 

Table 1: Processing time (in seconds) of each inversion routine of the Model 1. 

 

 

EQUATIONS 

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO 

L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm 

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS 

Dix 34.10 37.51 30.72 33.79 38.19 42.01 34.41 37.85 69.22 76.15 62.36 68.60 105.4 115.9 94.93 104.4 174.3 191.7 157.0 172.7 

Malovichko 71.12 74.18 62.39 65.07 79.65 83.08 69.87 72.88 144.4 150.6 126.6 132.1 219.8 229.2 192.8 201.1 363.4 379.1 318.8 332.5 

Alkhalifah and Tsvankin 75.50 84.47 67.41 75.42 84.56 94.61 75.50 84.47 153.3 171.5 136.8 153.1 233.3 261.0 208.3 233.1 385.8 431.6 344.5 385.4 

Ursin and Stovas 79.81 86.50 68.80 74.57 89.39 96.88 77.06 83.52 162.0 175.6 139.7 151.4 246.6 267.3 212.6 230.4 407.8 442.0 351.6 381.1 

Blias 68.69 79.37 59.22 68.42 76.93 88.89 66.32 76.63 139.4 161.1 120.2 138.9 212.3 245.3 183.0 211.4 351.0 405,6 302.6 349.6 

Muir and Dellinger 76.94 89.19 68.09 78.93 86.17 99.89 76.26 88.40 156.2 181.1 138.2 160.2 237.8 275.6 210.4 243.9 393.2 455.8 347.9 403.3 

Li and Yuan 61.79 72.29 51.49 60.24 69.20 80.96 57.67 67.47 125.4 145.8 104.5 122.3 190.9 223.4 159.1 186.2 315.8 369.4 263.1 307.8 

Proposed approximation 67.55 74.99 56.29 62.49 75.66 83.99 63.05 69.99 137.1 152.2 114.3 126.9 208.7 231.7 173.9 193.1 345.2 383.2 287.7 319.3 
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Table 2: Processing time (in seconds) of each inversion routine of the Model 2. 

 

 

EQUATIONS 

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO 

L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm 

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS 

Dix 34.82 38.30 31.37 34.50 38.99 42.89 35.13 38.64 70.68 77.74 63.67 70.04 107.6 118.3 96.92 106.6 177.9 195.7 160.3 176.3 

Malovichko 72.61 75.74 63.70 66.44 81.33 84.83 71.34 74.41 147.4 153.8 129.3 134.9 224.4 234.0 196.8 205.3 371.1 387.0 325.5 339.5 

Alkhalifah and Tsvankin 77.09 86.24 68.83 77.00 86.34 96.59 77.09 86.24 156.5 175.1 139.7 156.3 238.2 266.5 212.7 237.9 393.9 440.7 351.7 393.5 

Ursin and Stovas 81.49 88.32 70.25 76.13 91.26 98.91 78.68 85.27 165.4 179.3 142.6 154.6 251.8 272.9 217.1 235.3 416.4 451.3 359.0 389.1 

Blias 70.13 81.04 60.46 69.86 78.55 90.76 67.71 78.24 142.4 164.5 122.7 141.8 216.7 250.4 186.8 215.9 358.4 414.1 309.0 357.0 

Muir and Dellinger 78.56 91.06 69.52 80.59 87.98 102.0 77.86 90.26 159.5 184.9 141.1 163.6 242.7 281.4 241.8 249.0 401.4 465.3 355.2 411.8 

Li and Yuan 63.09 73.81 52.57 61.51 70.66 82.67 58.88 68.89 128.1 149.8 106.7 124.9 194.9 228.1 162.5 190.1 322.4 377.2 268.7 314.3 

Proposed approximation 68.97 76.56 57.47 63.80 77.24 85.75 64.37 71.46 140.0 155.4 116.7 129.5 213.1 236.6 177.6 197.2 352.4 391.3 293.7 326.0 
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Table 3: Processing time (in seconds) of each inversion routine of the Model 3. 

 

 

EQUATIONS 

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO 

L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm 

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS 

Dix 35.98 39.57 32.41 35.65 40.29 44.32 36.30 39.93 73.03 80.33 65.79 72.37 110.2 122.3 100.2 110.2 183.8 202.2 165.6 182.2 

Malovichko 75.03 78.26 65.82 68.65 84.04 87.65 73.72 76.89 152.3 158.9 113.6 139.4 231.9 241.8 203.4 212.1 383.4 399.9 336.3 350.8 

Alkhalifah and Tsvankin 79.65 89.12 71.12 79.57 89.21 99.81 79.65 89.12 161.7 180.9 144.4 161.5 246.1 275.4 219.8 245.9 407.0 455.4 363.4 406.6 

Ursin and Stovas 84.20 91.26 72.59 78.67 94.30 102.2 81.30 88.11 170.9 185.3 147.4 159.7 260.2 282.9 224.3 243.1 430.3 466.3 370.9 402.0 

Blias 72.47 83.74 62.47 72.19 81.16 93.78 69.97 80.85 147.1 170.0 126.8 146.5 223.9 258.7 193.0 223.1 370.3 427.9 319.2 368.9 

Muir and Dellinger 81.17 94.10 71.83 83.29 90.91 105.4 80.45 93.26 164.8 191.0 145.8 169.0 250.8 290.8 221.9 257.3 414.8 480.8 367.1 425.5 

Li and Yuan 65.19 76.27 54.32 63.55 73.01 85.42 60.84 71.18 132.3 154.8 110.3 129.0 201.4 235.7 167.9 196.4 333.1 389.7 277.6 324.8 

Proposed approximation 71.27 79.11 59.39 65.93 79.82 88.61 66.51 73.84 144.7 160.6 120.6 133.8 220.2 244.5 183.5 203.7 364.2 404.3 303.5 336.9 
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Table 4: Processing time (in seconds) of each inversion routine of the Model 4. 

 

 

EQUATIONS 

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO 

L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm 

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS 

Dix 35.63 39.20 32.10 35.31 39.91 43.90 35.96 39.55 72.34 79.57 65.17 71.69 110.1 121.1 99.20 109.1 182.1 200.3 164.1 180.5 

Malovichko 74.32 77.52 65.19 68.00 83.24 86.82 73.02 76.16 150.9 157.4 132.3 138.0 229.7 239.5 201.5 210.1 379.8 396.1 333.1 347.5 

Alkhalifah and Tsvankin 78.90 88.27 70.44 78.81 88.37 98.68 78.90 88.27 160.2 179.2 143.0 160.0 243.8 272.8 217.7 243.5 403.2 451.1 360.0 402.7 

Ursin and Stovas 83.40 90.39 71.90 77.92 93.41 101.2 80.53 87.28 169.3 183.5 146.0 158.2 257.7 279.3 222.2 240.8 426.2 461.9 367.4 398.2 

Blias 71.78 82.94 61.88 71.50 80.39 92.89 69.31 80.08 145.7 168.4 125.6 145.2 221.8 256.3 191.2 220.9 366.8 423.8 316.2 365.4 

Muir and Dellinger 80.40 93.20 71.15 82.48 90.05 140.4 79.69 92.38 163.2 189.2 144.4 167.4 248.4 288.0 219.9 254.9 410.9 476.3 363.6 421.5 

Li and Yuan 64.57 75.54 53.81 62.95 72.32 84.61 60.27 70.51 131.1 153.4 109.2 127.8 199.5 233.4 166.3 194.5 330.0 386.0 275.0 321.7 

Proposed approximation 70.59 78.36 58.82 65.30 79.06 87.77 65.88 73.14 143.3 159.1 119.4 132.6 218.1 242.2 181.8 201.8 360.7 400.4 300.6 333.7 
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Table 5: Processing time (in seconds) of each inversion routine of the Model 5. 

 

 

EQUATIONS 

IMFIL FMINSEARCH SID-PSM MCS TOMLAB/LGO 

L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm 

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS 

Dix 35.57 39.12 32.04 35.25 39.83 43.82 35.89 39.48 72.20 79.42 65.04 71.55 109.9 120.9 99.01 108.9 181.7 199.9 163.7 180.1 

Malovichko 74.18 77.37 65.07 67.87 83.08 86.65 72.88 76.01 150.6 157.1 132.1 137.8 229.2 239.1 201.1 209.7 379.1 395.4 332.5 346.8 

Alkhalifah and Tsvankin 78.75 88.10 70.31 78.66 88.20 98.67 78.75 88.10 159.9 178.9 142.7 159.7 243.3 227.2 217.3 243.1 402.4 450.2 359.3 402.0 

Ursin and Stovas 83.24 90.22 71.76 77.78 93.23 101.1 80.37 87.11 169.0 183.2 145.7 157.9 257.2 278.8 221.7 240.3 425.4 461.0 366.7 397.4 

Blias 71.64 82.78 61.76 71.36 80.24 92.72 69.17 79.93 145.4 168.1 125.4 144.9 221.4 255.8 190.8 220.5 366.1 423.0 315.6 364.7 

Muir and Dellinger 80.25 93.03 71.02 82.32 89.88 104.2 79.54 92.20 162.9 188.8 144.2 167.1 248.0 287.5 219.4 254.4 410.1 475.4 362.9 420.7 

Li and Yuan 64.45 75.40 53.71 62.83 72.18 84.45 60.15 70.37 130.8 153.1 109.0 127.6 199.1 233.0 166.0 194.2 329.3 385.3 274.4 321.1 

Proposed approximation 70.45 78.21 58.71 65.18 78.91 87.60 65.76 73.00 143.0 158.8 119.2 132.3 217.7 241.7 181.4 201.4 360.0 399.7 300.0 333.1 

 

 


